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ABSTRACT 
In this paper we establish a traveling wave solution for nonlinear partial differential 
equations using sine-function method. The method is used to obtain the  
exact solutions for three different types of  nonlinear partial differential equations  
like  general equal width wave equation (GEWE), general regularized long wave 
equation (GRLW), general Korteweg-de Vries  equation(GKDV) which are the 
important soliton equations. 
Key words:  GEWE, GRLW, GKDV, Sine-function method . 

1.   Introduction 
The study of numerical methods for the solution of partial differential equations has been 
on intense activity over the last 40 years both from theoretical and practical point of view. 
Many of the partial differential equations arising from engineering and scientific 
applications were previously intractable. But since after improvements in numerical 
techniques along with the rapid advances in computer technology, those problems can 
now be routinely solved [1]. Differential operators are approximated in finite difference 
methods and thus difference equations are solved. In finite element method, the 
continuous domain is represented as a collection of a finite number of sub-domains 
known as elements. In the case of time-dependent problems, the differential equations are 
approximated by the finite element method to get a set of ordinary differential equations 
in time. These differential equations are solved approximately by finite difference method 
or some other ways.  For all finite difference and finite elements it is necessary to have a 
boundary and initial conditions. But the Adomian decomposition method, developed by 
George Adomian, depends only on the initial conditions to obtain solution in series form 
which almost converges to the exact solutions of the problem. In recent years, some other 
ansatz methods have been developed such the tanh method [2,3], the extended tanh-
function method [4,5], the modified extended tanh-function method [6-10] and the sine-
cosine method [12,13] . 
Traveling waves are conspicuous in many linear and nonlinear modeling of wave, for 
example, sound wave, string wave, water wave etc. Many nonlinear models of wave can 
be found in different physical problems. Let us consider a simple example which admits 

traveling wave. Consider a one dimensional linear wave equation: 2
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c denotes speed of the wave and u is a function of spatial variable x  and time variable t . 
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The equation has the d’Alembert  solution of the form  
)ctx(g)ctx(f)t,x(u ++−=  

The functions )ctx(f −  and )ctx(g +  describe right and left moving waves 
respectively with a constant speed c . The wave )ctx(f −  can be observed with a new 
system of co-ordinates )t,x( ′′  so that  0=x  at 0=t . At time t , the position x  of the 
wave is ct , since c  is a speed of the wave, i.e. ctx = . Then the new co-ordinate is 

)t,ctx( − . This means the wave moves to the distance )ctx( −  at time t . Such waves 
arise in the study of nonlinear differential equations and waves are represented by the 
form )ctx(f)t,x(u −= , where )t,x(u is a disturbance moving in the negative or 
positive x  direction if 0<c  or 0>c respectively. If the traveling solution 

)t,x(u depends only on the difference between the two coordinates of partial differential 
equations, then the solution keeps its shape exact. If the transition from the asymptotic 
state at −∞=ξ to the other asymptotic state at ∞=ξ  of a traveling wave is localized in 
ξ , where tcx −=ξ , then it is called solitary wave. 

The objective of this paper is to use sine-function method to find the exact solutions of 
some nonlinear partial differential equations especially important soliton equations  such 
as the general equal width wave (GEW) equation, the general regularized long wave 
(GRLW) equation, the general  Korteweg-de Vries (GKDV) equation.  

2. The Sine-Function Method 
We consider the nonlinear partial differential equation in the form 

              ,0,.....),,,,( =xxtxxxt uuuuuG                                                                            (1) 

 where  ),( txu  is the solution of the nonlinear partial differential equation (1). 

Let’s take the transformations,  
          )(),( ξftxu =    where   ctx −=ξ  .                                                                    (2) 

Then we have the following transformations of differential operators : 
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Using (3) into equation (1), we get   
             0,...),,,( =′′′′′′ ffffG                                                                                      (4) 

  Equation  (4)  is an ODE  and  can be integrated as many time as all terms contain 
derivatives and one can set integration constant to zero 

 since  03
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ξ  as ∞→ξ  for the traveling wave.  

Now the solution of equation (4) is set as 



Soliton Solution of Nonlinear  Partial Differential Equations 57 

µ
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where  µβλ ,,  are unknown parameters to be determined. 

Then  )cos()(sin)( 1 µξµξλβµ
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Equations (6) are substituted into equation (4) to give a trigonometric equation of  
)(sin µξα  terms. First we balance the exponents of each pair of sine  to determine α . 

Then we collect all terms with the same power in  )(sin µξβ  and put to zero their 
coefficients to get a system of algebraic equations among unknowns µλβ and, . 
Therefore, the problem is reduced to a system of algebraic equations that can be solved 
for the unknowns using Mathematica . Once the unknown parameters are found, we 
obtain the solution as considered in (5) . 

3.  Applications 
To exhibit the effectiveness of the proposed method three nonlinear partial differential 
equations are chosen and the method is applied there. 
 
3.1 The General Equal Width Wave Equation ( GEWE) 
 
We have the General Equal Width Wave Equation ( GEWE) 

                        0=−+ xxtx
p

t uuuu νε                                                                            (7) 

 By using the wave variable  ctx −=ξ   and  )(),( ξftxu = , the GEWE is   
transformed into  
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 Since all the terms contain derivatives, integrating once equation (8) gives, 
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Substituting equation (6) into equation (9) , we get 
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Equating the exponents of  sine functions and the coefficients,  
2)1( −=+ ββp , 

0)1(22 =−−−− ββνλµνλβµλ ccc                                                                         (11) 
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(11) is a system of algebraic equations. 
Using Mathematica package for symbolic calculation, the system (11) is solved to obtain 
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Finally we substitute equation (12) into equation (5) and thereby obtain 
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When 1=p  , the solution matches with the soliton solution of the EWE as in [14], when  
2=p  , the solution is the soliton solution  of MEWE equation as in [16] and also we can 

get the soliton solution of the GEWE equation as in [17]. It is to be mentioned here that 
the obtained results are in good agreement with those found in [15-17]. 
3.2  The General Regularized Long Wave (GRLW) Equation 
We consider the general regularized long wave equation for long waves in shallow water 
as  in [18-22]: 

    0=−++ xxtx
p

xt uuuuu νε                                                                                    (13) 

 Using the transformation  )(),( ξftxu =  where  ctx −=ξ  , the equation (13) is 
transformed into the ODE 
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Since all the terms in (14) contain derivatives, integrating it once, we get 
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We substitute equation (6) into (15) to obtain 
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 By equating the exponents and the coefficients of each pair of the sine functions ,we get 
the following system of algebraic equations : 
            2)1( −=+ ββp  

           0)1()1( 22 =−−−− ββνλµνλβµλ ccc                                               (17) 
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Using Mathematica, we solve this system of equations and thereby obtain 
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 Finally substituting equation (19) into equation (5), we get 
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which is the exact soliton solution  of the GRLW equation . 

3.3  The General Korteweg-de Vries (GKDV) 
The equation ([23], [24]) for long waves in shallow water has the form: 

0=++ xxxx
p

t uuuu γε                                                                                                (19) 

We follow the same procedures as applied into the previous two sections 3.1 and 3.2, and 
obtain the following system of equations : 
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 Now we use Mathematica to solve this system of algebraic equations to obtain  

p
2

−=β  ,  
γ

µ
2

cip
±=  ,  and  

p
p ppc

1
21
)32(2 






 ++
=

−

ε
λ                                     (21) 



60  Rab and Akhter 

 Substituting the equation (21) into equation (5), we get  
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which is the exact soliton solution of GKDV . 

Conclusion  
In this paper, the sine-function method has been successfully applied to find the solution 
for three nonlinear partial differential equations such as  GEWE, GRLW and GKDV 
equations. The sine-function method is used to find a new exact solution. Therefore, we 
can say the proposed method can be extended to solve the problems of nonlinear partial 
differential equations arising in the theory of solitons and other areas. 
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