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ABSTRACT 

In this article, the Enhanced (퐺 /퐺)-expansion method has been projected to 
find the traveling wave solutions for nonlinear evolution equations(NLEEs) via 
the (2+1)-dimensional Burgers equation. The efficiency of this method for 
finding these exact solutions has been demonstrated with the help of symbolic 
computation software Maple. By this method we have obtained many new types 
of complexiton soliton solutions, such as, various combinations of trigonometric 
periodic function and rational function solutions, various combination of 
hyperbolic function and rational function solutions. The proposed method is 
direct, concise and effective, and can be used for many other nonlinear evolution 
equations. 
Key Words: Enhanced (퐺 /퐺) -expansion method, The (2+1)-dimensional 
Burgers equation, Traveling wave solutions, complexiton soliton, NLEEs. 
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1.  Introduction 
Nowadays NLEEs have been the subject of all-embracing studies in various branches of 
nonlinear sciences. A special class of analytical solutions named traveling wave solutions 
for NLEEs has a lot of importance, because most of the phenomena that arise in 
mathematical physics and engineering fields can be described by NLEEs. NLEEs are 
frequently used to describe many problems of protein chemistry, chemically reactive 
materials, in ecology most population models, in physics the heat flow and the wave 
propagation phenomena, quantum mechanics, fluid mechanics, plasma physics, 
propagation of shallow water waves, optical fibers, biology, solid state physics, chemical 
kinematics, geochemistry, meteorology, electricity etc. Therefore investigating traveling 
wave solutions is becoming more and more attractive in nonlinear sciences day by day. 
However, not all equations posed of these models are solvable. As a result, many new 
techniques have been successfully developed by diverse groups of mathematicians and 
physicists, such as  the Hirota’s bilinear transformation method [1, 2], the tanh-function 
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method [3, 4], the extended tanh-method [5, 6], the Exp-function method [7-12], the 
Adomian decomposition method [13], the F-expansion method [14], the auxiliary equation 
method [15], the Jacobi elliptic function method [16], the modified Exp-function method 
[17],  the (퐺 /퐺)-expansion method [18-23], the Modified simple equation method [24-26] 
and so on. 
Various ansatz have been proposed for seeking traveling wave solutions of nonlinear 
differential equations. 
He et al. [7] have introduced the Exp-function method which is very simple and 
straightforward. It is based on the assumption that traveling wave solutions can be 
expressed in the following form [7-12]:  
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where pdc ,, and q  are positive integers which are unknown to be determined, nA  and 

mB  are unknown constants. They had applied the Exp-function method for exact 
traveling wave solutions of modified KdV equation and Dodd–Bullough–Mikhailov 
equation. 
Recently, Wang et al. [20] have introduced a simple method which is called the 퐺 ′/퐺 -
expansion method to look for traveling wave solutions of nonlinear evolution equations, 
where 퐺 = 퐺(휉) satisfies the second order linear ordinary differential equation  퐺″(휉) +

휆퐺 ′(휉) + 휇퐺(휉) = 0 , where 휆 and 휇  are arbitrary constants and 푢(휉) = 훼
′

+
⋯⋯⋯⋯ be the traveling wave solution of NLEEs. By means of this method they have 
solved the KdV equation, the mKdV equation, the variant Boussinesq equations and the 
Hirota–Satsuma equations. 

Guo et al. [23] have introduced an another method so called extended )/( GG -expansion 
method where  GG  satisfies the second order linear ordinary differential equation 

0 GG  , where 
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They have proposed extended )/( GG -expansion method to construct traveling wave 
solutions of Whitham–Broer–Kaup–Like equations and coupled Hirota–Satsuma KdV 
equations. 
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For further references for the 퐺 ′/퐺 - expansion method see the articles [18-23]. 
In direct methods, the choice of an appropriate ansatz is of great importance. In this 
paper, based on a new general ansatz, we propose the Enhanced (G'/ G)-expansion 
method which can be used to obtain explicit solutions of NLEEs. 

Among those approaches, an Enhanced )/( GG -expansion method is a tool to reveal the 
solitons and periodic wave solutions of NLEEs in mathematical physics and engineering. 
The main ideas of the Enhanced )/( GG -expansion method are that the traveling wave 
solutions of NLEEs can be expressed as rational functions of )/( GG , where  GG   
satisfies the second order linear ordinary differential equation 0 GG  . 

The objective of this article is to apply the Enhanced (퐺 /퐺)-Expansion method to 
construct the exact solutions for nonlinear evolution equations in mathematical physics 
via the (2+1)-dimensional Burgers equations.  
The article is prepared as follows: In section 2, the Enhanced (퐺 /퐺)-Expansion method 
is discussed. In section 3, we apply the Enhanced (퐺 /퐺)-Expansion method to the 
nonlinear evolution equations pointed out above; in section 4, physical explanations and 
in section 5 conclusions are given. 

2. The Enhanced (푮 /푮)-Expansion method 
In this section we describe the Enhanced (퐺 /퐺)-Expansion method for finding traveling 
wave solutions of nonlinear evolution equations. Suppose that a nonlinear equation, say 
in two independent variables 푥 and 푡 is given by 
 ℛ(푢,푢 ,푢 ,푢 ,푢 ,푢 , … … … … ) = 0,      (2.1) 
where 푢(휉) = 푢(푥, 푡) is an unknown function,ℛ is a polynomial of 푢(푥, 푡)  and its partial 
derivatives in which the highest order derivatives and nonlinear terms are involved. In the 
following, we give the main steps of this method: 
Step 1. Combining the independent variables 푥 and 푡  into one variable 휉 = 푥 ± 휔푡, we 
suppose that 
            푢(휉) = 푢(푥, 푡),      휉 = 푥 ± 휔푡 .                                                (2.2) 
The traveling wave transformation Eq. (2.2) permits us to reduce Eq. (2.1) to the 
following ODE: 

℘(푢,푢 ,푢 , … … … … ) = 0,                        (2.3) 

where ℘ is a polynomial in 푢(휉) and its derivatives, while 푢′(휉) = ,푢″(휉) = , and 
so on. 
Step 2.We suppose that Eq.(2.3) has the formal solution 

 푢(휉) = ∑ /

( / )
+ 푏 (퐺 /퐺) 휎 1 + ( / ) ,                   (2.4) 

Where 퐺 = 퐺(휉) satisfy the equation 퐺 + 휇퐺 = 0,                                 (2.5) 
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in which 푎 ,푏  (−푛 ≤ 푖 ≤ 푛;푛 ∈ ℕ)  and 휆 are constants to be determined later, and 
휎 = ±1, 휇 ≠ 0. 
Step 3. We determine the positive integer 푛  in Eq. (2.4) by considering the 
homogeneous balance between the highest order derivatives and the nonlinear terms 
in Eq. (2.3). 
Step 4. We substitute Eq. (2.4) into Eq. (2.3) using Eq. (2.5) and then collect all terms of 

same powers of 퐺 ′/퐺 and 퐺 ′/퐺 휎 1 + (퐺 /퐺)   together, then set each 

coefficient of them to zero to yield a over-determined system of algebraic equations and 
then solve this system for 푎 ,푏 (−푛 ≤ 푖 ≤ 푛;푛 ∈ ℕ)   and  휆,휔. 
Step 5. For the general solutions of Eq. (2.5), we can get 

 = √−휇 = H ; when  휇 < 0. 

and = √휇 = H  ; when 휇 > 0.    (2.6) 

where퐴,퐵  are arbitrary constants. Finally, substitute 푎 , 푏 (−푛 ≤ 푖 ≤ 푛;푛 ∈ ℕ) , 휆, 휔  
and Eq. (2.6) into Eq. (2.4) and obtain traveling wave solutions of Eq. (2.1). 

3. Application 
In this section, we will exert Enhanced (퐺 /퐺)-expansion method to solve the (2+1)-
dimensional Burgers equation in the form, 
 푢 − 푢푢 − 푢 − 푢 = 0.                       (3.1) 

The traveling wave transformation equation푢(휉) = 푢(푥, 푡),휉 = 푥 − 휔푡 reduces Eq.(3.1) 
to the following ordinary differential equation: 
 −휔푢 − 푢푢 − 푢 − 푢 = 0.                        (3.2) 

Integrating Eq.(3.2) with respect to 휉, we get  

 휔푢 + + 2푢′ + 푘 = 0,            (3.3) 

where 푘 is an integration constant.  
Now balancing the highest-order derivative 푢′ and nonlinear term 푢  in Eq. (3.3), we get 
2푛 = 푛 + 1, which gives  푛 = 1. Therefore, the solution Eq. (2.4) reduces to 

푢(휉) = 푎 +
푎 퐺 ′/퐺

1 + 휆(퐺 ′/퐺) +
푎 1 + 휆 퐺 ′/퐺

(퐺 ′/퐺) + 푏 퐺′/퐺 휎 1 +
(퐺 ′/퐺)

휇
 

   +푏 휎 1 + ( ′/ ) + 푏 퐺 ′/퐺 휎 1 + ( ′/ ) ,          (3.4) 

where 퐺 = 퐺(휉) satisfies Eq. (2.5). Substituting Eq. (3.4) along with Eq. (2.5) into Eq. 

(3.3), collecting all terms with the same powers of 퐺 ′/퐺 and 퐺 ′/퐺 휎 1 + ( ′/ )   
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and setting them to zero, we get over-determined system of eighteen algebraic equations 
with the aid of software Maple. 

Set 1: 푘 = 푎 + 4푎 휆휇 + 8휇 휆 + 8휇,휔 = −4휇휆 − 푎 , 휆 = 휆,푎 = 푎 ,  
  푎 = 4휇휆 + 4,푎 = 푏 = 푏 = 푏 = 0. 

Set 2: 푘 = 푎 − 4푎 휆휇 + 8휇 휆 + 8휇,휔 = 4휇휆 − 푎 ,휆 = 휆,푎 = −4휇,  
  푎 = 푎 ,푎 = 푏 = 푏 = 푏 = 0. 

Set 3: 푘 = 푎 + 32휇,휔 = −푎 , 휆 = 0,푎 = −4휇,푎 = 푎 ,푎 = 4, 푏 = 푏 =
푏 = 0. 

Set 4: 푘 = 푎 − 2푎 휆휇 + 2휇 휆 + 2휇,휔 = 2휇휆 − 푎 ,휆 = 휆,푎 = −2휇,  

  푎 = 푎 , 푏 = ±
√

,푎 = 푏 = 푏 = 0. 

Now substituting Set 1-Set 4 and Eq. (2.6) into Eq. (3.4), we deduce abundant traveling 
wave solutions of Eq. (3.1) as follows: 

For another set {푘 = − 푎 (푎 + 2휔),휔 = 휔, 휆 = 휆,푎 = 푎 ,푎 = 푎 = 푏 = 푏 =
푏 = 0} Eq.(3.4) gives trivial solutions.So this case is rejected. 
When 휇 < 0, 퐴 ≠ 퐵, we have the following hyperbolic function solutions:  

Family- 1:  푢(휉) = 푎 + , 

where 휉 = 푥 + 푦 − (−4휇휆 − 푎 )푡. 

Family- 2:  푢(휉) = 푎 − ( ), 

where 휉 = 푥 + 푦 − (4휇휆 − 푎 )푡. 

Family- 3:  푢(휉) = 푎 + − ( ), 

where 휉 = 푥 + 푦 − (−푎 )푡. 

Family- 4:  푢(휉) = 푎 − ( ) ±
√

(H ) 휎 1 + , 

where 휉 = 푥 + 푦 − (2휇휆 − 푎 )푡. 
when 휇 > 0, we have the following trigonometric function solutions for the above 
mentioned set 1 to set 4. 

Family- 5:  푢(휉) = 푎 + , 

where 휉 = 푥 + 푦 − (−4휇휆 − 푎 )푡. 

Family- 6:  푢(휉) = 푎 − ( ), 

where 휉 = 푥 + 푦 − (4휇휆 − 푎 )푡. 

Family- 7:       푢(휉) = 푎 + − ( ), 
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where 휉 = 푥 + 푦 − (−푎 )푡. 

Family- 8:  푢(휉) = 푎 − ( ) ±
√

(H ) 휎 1 + , 

where 휉 = 푥 + 푦 − (2휇휆 − 푎 )푡. 

4. Physical Explanations  
In this section we will discuss the physical explanations and graphical representation of 
the above determined eight families of solutions. 
4.1  Explanations 
The introduction of dispersion without introducing nonlinearity destroys the solitary 
wave as different Fourier harmonics start propagating at different group velocities. On 
the other hand, introducing nonlinearity without dispersion also prevents the formation of 
solitary waves, because the pulse energy is frequently pumped into higher frequency 
modes. However, if both dispersion and nonlinearity are present, solitary waves can be 
sustained. Similarly to dispersion, dissipation can also give rise to solitary waves when 
combined with nonlinearity.  Hence it is interesting to point out that the delicate balance 
between the nonlinearity effect of  푢푢  and the dissipative effect of  푢  and 푢  give 
rise to solitons, that after a fully interaction with others the solitons come back  retaining 
their identities with the same speed and shape. The (2+1)-dimensional Burgers equation 
has solitary wave solutions that have exponentially decaying wings. If two solitons of the 
(2+1)-dimensional Burgers equation collide, the solitons just pass through each other and 
emerge unchanged. For special values of the parameters solitary wave solutions are 
originated from the obtained exact solutions. 
Fig. 1: For the values of 휇 = −1, 휆 = 0,퐴 = 1,퐵 = 0,푎 = 1,푦 = 0 within the interval 

−3 ≤ 푥, 푡 ≤ 3, Family-1 represents kink wave. Kink waves are traveling waves 
which rise or descend from one asymptotic state to another. The kink solution 
approaches a constant at infinity. 

Fig. 2: For the values of 휇 = −2, 휆 = 1,퐴 = 2,퐵 = 1,푎 = 1,푦 = 0  within the 
interval−1 ≤ 푥, 푡 ≤ 1 , Family-2 represents soliton wave. Solitons are special 
kinds of solitary waves. The soliton solution is spatially localized solution, hence 
푢′(휉) , 푢″(휉)  and 푢‴(휉) → 0  as 휉 → ±∞ , 휉 = 푥 − 휔푡 . Solitons have a 
remarkable soliton property in that it keeps its identity upon interacting with 
other solitons. 

Fig. 3: For the values of 휇 = −1,퐴 = 0,퐵 = 1, 푎 = 1,푦 = 0 within the interval−10 ≤
푥, 푡 ≤ 10, Family-3 represents singular soliton wave. 

Fig. 4: For the values of 휇 = −1, 휆 = 2,퐴 = 0,퐵 = 1,푎 = 0,푦 = 0  within the 
interval−10 ≤ 푥, 푡 ≤ 10 , Family-4 represents complex kink wave under the 
condition that any one of the constant 퐴 or 퐵 must be zero. 

Family-5 to Family-8 are periodic solutions. Periodic solutions are traveling wave 
solutions that are periodic.  
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Fig. 5: For the values of  휇 = 1, 휆 = 0,퐴 = 1,퐵 = 1,푎 = 1,푦 = 0 within the interval 
 −3 ≤ 푥, 푡 ≤ 3 Fig. 5 represents the shape of Family-5. 
Fig. 6: For the values of 휇 = 2, 휆 = 1,퐴 = 1,퐵 = 0,푎 = 1,푦 = 2 within the interval  
 −10 ≤ 푥, 푡 ≤ 10 Fig. 6 represents the shape of Family-6. 
Fig. 7: For the values of 휇 = 1, 휆 = 0,퐴 = 0,퐵 = 1,푎 = 2,푦 = 2 within the interval  
 −5 ≤ 푥, 푡 ≤ 5 Fig. 7 represents the shape of Family-7. 
Fig. 8: For the values of 휇 = 1, 휆 = 1,퐴 = 1,퐵 = 3,푎 = 0,푦 = 0 within the interval 
  −3 ≤ 푥, 푡 ≤ 3 Fig. 8 represents the shape of Family-8. 
Moreover, the graphical illustrations of some obtained solutions are shown in Fig.-1 to 
Fig.-8 in the following subsection. 
4.2. Graphical representation 
Some of our obtained traveling wave solutions are represented in the following figures 
with the aid of commercial software Maple: 

 
Fig.1: Kink solution of Family-1 for 
휇 = −1, 휆 = 0,퐴 = 1,퐵 = 0,푎 = 1,푦 =
0,−3 ≤ 푥, 푡 ≤ 3.  

 
Fig.2: Soliton solution of Family-2 for 
휇 = −2, 휆 = 1,퐴 = 2,퐵 = 1,푎 = 1,푦 =
0,−1 ≤ 푥, 푡 ≤ 1. 
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Fig.3: Soliton solution of Family-3 for 
휇 = −1,퐴 = 0,퐵 = 1,푎 = 1,푦 =
0,−10 ≤ 푥, 푡 ≤ 10 . 

 
Fig.4: Kink solution of Family-4 for휇 =
−1, 휆 = 2,퐴 = 0,퐵 = 1,푎 = 0,푦 =
0,−10 ≤ 푥, 푡 ≤ 10. 

 
Fig.5: Periodic solution of Family-5 
for 휇 = 1, 휆 = 0,퐴 = 1,퐵 = 1,푎 = 1,푦 =
0,−3 ≤ 푥, 푡 ≤ 3. 

 
Fig.6: Periodic solution of Family-6 for 
휇 = 2, 휆 = 1,퐴 = 1,퐵 = 0,푎 = 1,푦 =
2,−10 ≤ 푥, 푡 ≤ 10. 
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Fig.7: Periodic solution of Family-7 for 
휇 = 1, 휆 = 0,퐴 = 0,퐵 = 1,푎 = 2,푦 =
2,−5 ≤ 푥, 푡 ≤ 5. 

 
Fig.8: Periodic solution of Family-8 
for  휇 = 1, 휆 = 1,퐴 = 1,퐵 = 3,푎 =
0,푦 = 0,−3 ≤ 푥, 푡 ≤ 3. 

5. Conclusion  
In summary, we have proposed the Enhanced (퐺 /퐺)-expansion method and applied it to 
the (2+1)-dimensional Burgers equation. As a result, some new exact traveling wave 
solutions, so called complexiton soliton solutions are obtained. The method which we 
have proposed in this letter is standard, direct and computerized method which allows us 
to do complicated and tedious algebraic calculation. It is shown that the algorithm used in 
this paper can be also applied to other NLEEs in mathematical physics.  
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