SEMI DERIVATIONS OF PRIME GAMMA RINGS

Kalyan Kumar Dey ${ }^{1}$ and Akhil Chandra Paul ${ }^{2}$
1,2 Department of Mathematics
Rajshahi University, Rajshahi-6205, Bangladesh
${ }^{1}$ kkdmath@yahoo.com; ${ }^{2}$ acpaulru_math@yahoo.com

Received 25.4.2011
Accepted 28.12.2012

Abstract

Let M be a prime Γ-ring satisfying a certain assumption (*). An additive mapping $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{M}$ is a semi-derivation if $f(x \alpha y)=f(x) \alpha g(y)+x \alpha f(y)=f(x) \alpha y+g(x) \alpha f(y)$ and $f(g(x))=g(f(x))$ for all x, $\mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$, where $\mathrm{g}: \mathrm{M} \rightarrow \mathrm{M}$ is an associated function. In this paper, we generalize some properties of prime rings with semi-derivations to the prime Γ-rings with semi-derivations.

2000 AMS Subject Classifications: 16A70, 16A72, 16A10.
Keywords: Semi derivation, Prime gamma ring, Commuting mapping

1. Introduction

J. C. Chang [6] worked on semi-derivations of prime rings. He obtained some results of derivations of prime rings into semi-derivations. H. E. Bell and W. S. Martindale III [1] investigated the commutativity property of a prime ring by means of semi-derivations. C. L. Chuang [7] studied on the structure of semi-derivations in prime rings. He obtained some remarkable results in connection with the semi-derivations. J. Bergen and P . Grzesczuk [3] obtained the commutativity properties of semiprime rings with the help of skew (semi)-derivations. A. Firat [8] generalized some results of prime rings with derivations to the prime rings with semi-derivations.
In this paper, we generalize some results of prime rings with semi-derivations to the prime Γ-rings with semi-derivations.

2. Preliminaries

Let M and Γ be additive abelian groups. M is called a Γ-ring if for all $x, y, z \in M, \alpha, \beta \in \Gamma$ the following conditions are satisfied:
(i) $x \beta y \in M$,
(ii) $(\mathrm{x}+\mathrm{y}) \alpha z=\mathrm{x} \alpha \mathrm{z}+\mathrm{y} \alpha z, \mathrm{x}(\alpha+\beta) \mathrm{y}=\mathrm{x} \alpha y+\mathrm{x} \beta y, \mathrm{x} \alpha(\mathrm{y}+\mathrm{z})=\mathrm{x} \alpha y+\mathrm{x} \alpha z$,
(iii) $(\mathrm{x} \alpha y) \beta \mathrm{z}=\mathrm{x} \alpha(\mathrm{y} \beta \mathrm{z})$.

Let M be a Γ-ring with center $C(M)$. For any $x, y \in M$, the notation $[x, y]_{\alpha}$ and $(x, y)_{\alpha}$ will denote $x \alpha y-y \alpha x$ and $x \alpha y+y \alpha x$ respectively. We know that $[x \beta y, z]_{\alpha}=x \beta[y, z]_{\alpha}+$ $[x, z]_{\alpha} \beta y+x[\beta, \alpha]_{z} y$ and $[x, y \beta z]_{\alpha}=y \beta[x, z]_{\alpha}+[x, y]_{\alpha} \beta z+y[\beta, \alpha]_{x} z$, for all $x, y, z \in M$ and for
all $\alpha, \beta \in \Gamma$. We shall take an assumption (*) $x \alpha y \beta z=x \beta y \alpha z$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$. Using the assumption (*) the identities $[x \beta y, z]_{\alpha}=x \beta[y, z]_{\alpha}+[x, z]_{\alpha} \beta y$ and $[x, y \beta z]_{\alpha}=y \beta[x, z]_{\alpha}+[x, y]_{\alpha} \beta z$, for all $x, y, z \in M$ and for all $\alpha, \beta \in \Gamma$ are used extensively in our results. So we make extensive use of the basic commutator identities: $(x \beta y, z)_{\alpha}=(x$, $\mathrm{z})_{\alpha} \beta \mathrm{y}+\mathrm{x} \beta[\mathrm{y}, \mathrm{z}]_{\alpha}=[\mathrm{x}, \mathrm{z}]_{\alpha} \beta \mathrm{y}+\mathrm{x} \beta(\mathrm{y}, \mathrm{z})_{\alpha}$. A Γ-ring M is to be n -torsion free if $\mathrm{nx}=0$, $x \in M$ implies $x=0$. Recall that a Γ-ring M is prime if $x Г М Г y=0$ implies that $x=0$ or y $=0$.

A mapping D from M to M is said to be commuting on M if $[D(x), x]_{\alpha}=0$ holds for all $x \in M, \alpha \in \Gamma$, and is said to be centralizing on M if $[D(x), x]_{\alpha} \in C(M)$ holds for all $x \in M$, $\alpha \in \Gamma$. An additive mapping D from M to M is called a derivation if $D(x \alpha y)=D(x) \alpha y+$ $\mathrm{x} \alpha \mathrm{D}(\mathrm{y})$ holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$.

Let M be a Γ-ring. An additive mapping $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{M}$, is called a semi-derivation associated with a function $\mathrm{g}: \mathrm{M} \rightarrow \mathrm{M}$, if, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$,
(i) $\mathrm{d}(\mathrm{x} \alpha \mathrm{y})=\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+\mathrm{x} \alpha \mathrm{d}(\mathrm{y})=\mathrm{d}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})$,
(ii) $\mathrm{d}(\mathrm{g}(\mathrm{x}))=\mathrm{g}(\mathrm{d}(\mathrm{x}))$.

If $g=I$, i.e., an identity mapping of M, then all semi-derivations associated with g are merely ordinary derivations. If g is any endomorphism of M, then other examples of semi-derivations are of the form $d(x)=x-g(x)$.

Example 2.1

Let M_{1} be a Γ_{1} ring and M_{2} be a Γ_{2}-ring. Consider $\mathrm{M}=\mathrm{M}_{1} \times \mathrm{M}_{2}$ and $\Gamma=\Gamma_{1} \times \Gamma_{2}$.
Define addition and multiplication on M and Γ by

$$
\begin{aligned}
& \left(m_{1}, m_{2}\right)+\left(m_{3}, m_{4}\right)=\left(m_{1}+m_{3}, m_{2}+m_{4}\right) \\
& \left(\alpha_{1}, \alpha_{2}\right)+\left(\alpha_{3}, \alpha_{4}\right)=\left(\alpha_{1}+\alpha_{3}, \alpha_{2}+\alpha_{4}\right) \\
& \left(m_{1}, m_{2}\right)\left(\alpha_{1}, \alpha_{2}\right)\left(m_{3}, m_{4}\right)=\left(m_{1} \alpha_{1} m_{3}, m_{2} \alpha_{2} m_{4}\right)
\end{aligned}
$$

for every $\left(m_{1}, m_{2}\right),\left(m_{3}, m_{4}\right) \in M$ and $\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{3}, \alpha_{4}\right) \in \Gamma$.
Under these addition and multiplication M is a Γ-ring. Let $\delta: \mathrm{M}_{1} \rightarrow \mathrm{M}_{1}$ be an additive map and $\tau: \mathrm{M}_{2} \rightarrow \mathrm{M}_{2}$ be a left and right $\mathrm{M}_{2}{ }^{\Gamma}$-module which is not a derivation. Define $\mathrm{d}:$ $M \rightarrow M$ such that $d\left(\left(m_{1}, m_{2}\right)\right)=\left(0, \tau\left(m_{2}\right)\right)$ and $g: M \rightarrow M$ such that $g\left(\left(m_{1}, m_{2}\right)\right)=\left(\delta\left(m_{1}\right)\right.$, 0), $m_{1} \in M_{1}, m_{2} \in M_{2}$. Then it is clear that d is a semi-derivation of M (with associated map $\mathrm{g})$ which is not a derivation.

3. Semi Derivations of Prime Γ-rings

We obtain our results.

Lemma 3.1

Let M be a prime Γ-ring satisfying the assumption (*) and let $\mathrm{m} \in \mathrm{M}$. If

$$
\left[[\mathrm{m}, \mathrm{x}]_{\alpha}, \mathrm{x}\right]_{\alpha}=0 \text { for all } \mathrm{x} \in \mathrm{M}, \alpha \in \Gamma \text {, then } \mathrm{x} \in \mathrm{C}(\mathrm{M}) .
$$

Proof

A linearization of $\left[[\mathrm{m}, \mathrm{x}]_{\alpha}, \mathrm{x}\right]_{\alpha}=0$ for all $\mathrm{x} \in \mathrm{M}, \alpha \in \Gamma$, gives

$$
\begin{equation*}
\left[[\mathrm{m}, \mathrm{x}]_{\alpha}, \mathrm{y}\right]_{\alpha}+\left[[\mathrm{m}, \mathrm{y}]_{\alpha}, \mathrm{x}\right]_{\alpha}=0 \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma . \tag{1}
\end{equation*}
$$

Replacing y by $\mathrm{y} \beta \mathrm{x}$ in (1) and using $\left[[\mathrm{m}, \mathrm{x}]_{\alpha}, \mathrm{x}\right]_{\alpha}=0$ for all $\mathrm{x} \in \mathrm{M}, \alpha \in \Gamma$, we obtain $0=\left[[\mathrm{m}, \mathrm{x}]_{\alpha}, \mathrm{y} \beta \mathrm{x}\right]_{\alpha}+\left[[\mathrm{m}, \mathrm{y} \beta \mathrm{x}]_{\alpha}, \mathrm{x}\right]_{\alpha}=\left[[\mathrm{m}, \mathrm{x}]_{\alpha}, \mathrm{y}\right]_{\alpha} \beta \mathrm{x}+\left[[\mathrm{m}, \mathrm{y}]_{\alpha} \beta \mathrm{x}+\mathrm{y} \beta[\mathrm{m}, \mathrm{x}]_{\alpha}\right.$ $=\left[[\mathrm{m}, \mathrm{x}]_{\alpha}, \mathrm{y}\right]_{\alpha} \beta \mathrm{x}+[[\mathrm{m}, \mathrm{y}] \alpha, \mathrm{x}]_{\alpha} \beta \mathrm{x}+[\mathrm{y}, \mathrm{x}]_{\alpha} \beta[\mathrm{m}, \mathrm{x}]_{\alpha}$, for all $\mathrm{x} \in \mathrm{M}, \alpha \in \Gamma$,
Applying (1), we then get $[y, x]_{\alpha} \beta[m, x]_{\alpha}=0$, for all $x \in M, \alpha \in \Gamma$. Taking $y \beta z$ for y in this relation and using $[y \beta z, x]_{\alpha}=[y, x]_{\alpha} \beta z+y \beta[z, x]_{\alpha}$, we see that
$[y, x]_{\alpha} \beta z \beta[m, x]_{\alpha}=0$, for all $x, y, z \in M, \alpha \in \Gamma$. In particular, $[m, x]_{\alpha} \beta z \beta[m, x]_{\alpha}=0$, for all $x \in M, \alpha \in \Gamma$. Since M is prime, $[m, x]_{\alpha}=0$. This implies $x \in C(M)$.

Theorem 3.2

Let M be a non-commutative 2 -torsion free prime Γ-ring satisfying the condition $\left(^{*}\right)$ and d is a semi-derivation of M with $g: M \rightarrow M$ is an onto endomorphism. If the mapping x $\rightarrow[a \beta d(x), x]_{\alpha}$ for all $\alpha, \beta \in \Gamma$, is commuting on M, then $a=0$ or $d=0$.

Proof

Firstly, we assume that a be a nonzero element of M. Then we know that the mapping x $\rightarrow[\mathrm{a} \beta \mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}$ is commuting on M . Thus we have $\left[[\mathrm{a} \beta \mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}, \mathrm{x}\right]_{\alpha}=0$. By lemma 3.1, we have

$$
\begin{equation*}
[\mathrm{a} \beta \mathrm{~d}(\mathrm{x}), \mathrm{x}]_{\alpha}=0 \text {, for all } \mathrm{x} \in \mathrm{M}, \alpha, \beta \in \Gamma \text {. } \tag{2}
\end{equation*}
$$

By linearizing (2), we have

$$
\begin{equation*}
[\mathrm{a} \beta \mathrm{~d}(\mathrm{x}), \mathrm{y}]_{\alpha}+[\mathrm{a} \beta \mathrm{~d}(\mathrm{y}), \mathrm{x}]_{\alpha}=0, \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha, \beta \in \Gamma . \tag{3}
\end{equation*}
$$

From this relation it follows that
$a \beta[d(x), y]_{\alpha}+[a, y]_{\alpha} \beta d(x)+a \beta[d(y), x]_{\alpha}+[a, x]_{\alpha} \beta d(y)=0$, for all $x, y \in M, \alpha, \beta \in \Gamma$.
Replacing y by y $\delta \mathrm{x}$ in (3) and using (2), we get
$[\mathrm{a} \beta \mathrm{d}(\mathrm{x}), \mathrm{y} \delta \mathrm{x}]_{\alpha}+[\mathrm{a} \beta \mathrm{d}(\mathrm{y} \delta \mathrm{x}), \mathrm{x}]_{\alpha}=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha, \beta \in \Gamma$.
We get

$$
\begin{align*}
& \mathrm{y} \delta[\mathrm{a} \beta \mathrm{~d}(\mathrm{x}), \mathrm{x}]_{\alpha}+[\mathrm{a} \beta \mathrm{~d}(\mathrm{x}), \mathrm{y}]_{\alpha} \delta \mathrm{x}+[\mathrm{a} \beta(\mathrm{~d}(\mathrm{y}) \delta \mathrm{x}+\mathrm{g}(\mathrm{y}) \delta \mathrm{d}(\mathrm{x})), \mathrm{x}]_{\alpha} \\
&= {[\mathrm{a} \beta \mathrm{~d}(\mathrm{x}), \mathrm{y}]_{\alpha} \delta \mathrm{x}+[\mathrm{a} \beta \mathrm{~d}(\mathrm{y}) \delta \mathrm{x}, \mathrm{x}]_{\alpha}+[\mathrm{a} \beta \mathrm{~g}(\mathrm{y}) \delta \mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha} } \\
&= \mathrm{a} \beta[\mathrm{~d}(\mathrm{x}), \mathrm{y}]_{\alpha} \delta \mathrm{x}+[\mathrm{a}, \mathrm{y}]_{\alpha} \beta \mathrm{d}(\mathrm{x}) \delta \mathrm{x}+\mathrm{a} \beta \mathrm{~d}(\mathrm{y}) \delta[\mathrm{x}, \mathrm{x}]_{\alpha}+[\mathrm{a} \beta \mathrm{~d}(\mathrm{y}), \mathrm{x}]_{\alpha} \delta \mathrm{x}+ \\
& \mathrm{a} \beta \mathrm{~g}(\mathrm{y}) \delta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}+[\mathrm{a} \beta \mathrm{~g}(\mathrm{y}), \mathrm{x}]_{\alpha} \delta \mathrm{d}(\mathrm{x}) \\
&= \mathrm{a} \beta[\mathrm{~d}(\mathrm{x}), \mathrm{y}]_{\alpha} \delta \mathrm{x}+[\mathrm{a}, \mathrm{y}]_{\alpha} \beta \mathrm{d}(\mathrm{x}) \delta \mathrm{x}+\mathrm{a} \beta[\mathrm{~d}(\mathrm{y}), \mathrm{x}]_{\alpha} \delta \mathrm{x}+[\mathrm{a}, \mathrm{x}]_{\alpha} \beta \mathrm{d}(\mathrm{y}) \delta \mathrm{x}+\mathrm{a} \beta \mathrm{~g}(\mathrm{y}) \delta[\mathrm{d}(\mathrm{x}), \\
&\mathrm{x}]_{\alpha}+\mathrm{a} \beta[\mathrm{~g}(\mathrm{y}), \mathrm{x}]_{\alpha} \delta \mathrm{d}(\mathrm{x})+[\mathrm{a}, \mathrm{x}]_{\alpha} \beta \mathrm{g}(\mathrm{y}) \delta d(\mathrm{x})=0 \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha, \beta \in \Gamma . \tag{5}
\end{align*}
$$

Right multiplication of (3) by δx gives
$\mathrm{a} \beta[\mathrm{d}(\mathrm{x}), \mathrm{y}]_{\alpha} \delta \mathrm{x}+[\mathrm{a}, \mathrm{y}]_{\alpha} \beta \mathrm{d}(\mathrm{x}) \delta \mathrm{x}+\mathrm{a} \beta[\mathrm{d}(\mathrm{y}), \mathrm{x}]_{\alpha} \delta \mathrm{x}+[\mathrm{a}, \mathrm{x}]_{\alpha} \beta \mathrm{d}(\mathrm{y}) \delta \mathrm{x}=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$, $\alpha, \beta \in \Gamma$.
Subtracting (6) from (5), we obtain
$\mathrm{a} \beta \mathrm{g}(\mathrm{y}) \delta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}+\mathrm{a} \beta[\mathrm{g}(\mathrm{y}), \mathrm{x}]_{\alpha} \delta \mathrm{d}(\mathrm{x})+[\mathrm{a}, \mathrm{x}]_{\alpha} \beta \mathrm{g}(\mathrm{y}) \delta \mathrm{d}(\mathrm{x})=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha, \beta, \delta \in \Gamma$.

Taking $\operatorname{a} \lambda g(y)$ instead of $g(y)$ in (7), we have

$$
\begin{align*}
& \mathrm{a} \beta \mathrm{a} \lambda \mathrm{~g}(\mathrm{y}) \delta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}+\mathrm{a} \beta[\mathrm{a} \lambda \mathrm{~g}(\mathrm{y}), \mathrm{x}]_{\alpha} \delta \mathrm{d}(\mathrm{x})+[\mathrm{a}, \mathrm{x}]_{\alpha} \beta \mathrm{a} \lambda \mathrm{~g}(\mathrm{y}) \delta \mathrm{d}(\mathrm{x}) \\
& =\mathrm{a} \beta \mathrm{a} \lambda \mathrm{~g}(\mathrm{y}) \delta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}+\mathrm{a} \beta \mathrm{a} \lambda[\mathrm{~g}(\mathrm{y}), \mathrm{x}]_{\alpha} \delta \mathrm{d}(\mathrm{x})+\mathrm{a} \beta[\mathrm{a}, \mathrm{x}]_{\alpha} \lambda \mathrm{g}(\mathrm{y}) \delta \mathrm{d}(\mathrm{x}) \\
& +[\mathrm{a}, \mathrm{x}]_{\alpha} \beta \mathrm{a} \lambda \mathrm{~g}(\mathrm{y}) \delta \mathrm{d}(\mathrm{x}) \\
& =\mathrm{a} \beta \mathrm{a} \lambda \mathrm{~g}(\mathrm{y}) \delta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}+\mathrm{a} \beta \mathrm{a} \lambda[\mathrm{~g}(\mathrm{y}), \mathrm{x}]_{\alpha} \delta \mathrm{d}(\mathrm{x})+\mathrm{a} \beta[\mathrm{a}, \mathrm{x}]_{\alpha} \lambda \mathrm{g}(\mathrm{y}) \delta \mathrm{d}(\mathrm{x}) \\
& +[\mathrm{a}, \mathrm{x}]_{\alpha} \beta \mathrm{a} \lambda \mathrm{~g}(\mathrm{y}) \delta \mathrm{d}(\mathrm{x}) \\
& =0 \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha, \beta, \lambda, \delta \in \Gamma . \tag{8}
\end{align*}
$$

Left multiplication of (6) by a λ leads to

$$
\begin{align*}
& \mathrm{a} \lambda \mathrm{a} \beta \mathrm{~g}(\mathrm{y}) \delta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}+\mathrm{a} \lambda \mathrm{a} \beta[\mathrm{~g}(\mathrm{y}), \mathrm{x}]_{\alpha} \delta \mathrm{d}(\mathrm{x})+\mathrm{a} \lambda[\mathrm{a}, \mathrm{x}]_{\alpha} \beta \mathrm{g}(\mathrm{y}) \delta \mathrm{d}(\mathrm{x}) \\
& =\mathrm{a} \beta \mathrm{a} \lambda \mathrm{~g}(\mathrm{y}) \delta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}+\mathrm{a} \beta \mathrm{a} \lambda[\mathrm{~g}(\mathrm{y}), \mathrm{x}]_{\alpha} \delta \mathrm{d}(\mathrm{x})+\mathrm{a} \beta[\mathrm{a}, \mathrm{x}]_{\alpha} \lambda \mathrm{g}(\mathrm{y}) \delta \mathrm{d}(\mathrm{x})=0 \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{M}, \\
& \alpha, \beta, \delta, \lambda \in \Gamma . \tag{9}
\end{align*}
$$

Subtracting (9) from (8), we get $[a, x]_{\alpha} \beta a \lambda g(y) \delta d(x)=0$ for all $x, y \in M, \alpha, \beta, \lambda, \delta \in \Gamma$.
Since M is prime, we obtain that for any $\mathrm{x} \in \mathrm{M}$ either $\mathrm{d}(\mathrm{x})=0$ or $[\mathrm{a}, \mathrm{x}]_{\alpha}=0$.
It means that M is the union of its additive subgroups $P=\{x \in M: d(x)=0\}$
and $Q=\left\{x \in M:[a, x]_{\alpha} \beta a=0\right\}$. Since a group cannot be the union of two proper subgroups, we find that either $\mathrm{P}=\mathrm{M}$ or $\mathrm{Q}=\mathrm{M}$.

If $\mathrm{P}=\mathrm{M}$, then $\mathrm{d}=0$. If $\mathrm{Q}=\mathrm{M}$, then this implies that $[\mathrm{a}, \mathrm{x}]_{\alpha} \beta \mathrm{a}=0$, for all $\mathrm{x} \in \mathrm{M}, \alpha, \beta \in \Gamma$.
Let us take $x \delta y$ instead of x in this relation. Then we get $[a, x \delta y]_{\alpha} \beta a=0$, for all $x \in M$, $\alpha, \beta \in \Gamma$.
We get $[\mathrm{a}, \mathrm{x} \delta \mathrm{y}]_{\alpha} \beta \mathrm{a}=\mathrm{x} \delta[\mathrm{a}, \mathrm{y}]_{\alpha} \beta \mathrm{a}+[\mathrm{a}, \mathrm{x}]_{\alpha} \delta \mathrm{y} \beta \mathrm{a}=[\mathrm{a}, \mathrm{x}]_{\alpha} \delta \mathrm{y} \beta \mathrm{a}=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$, $\alpha, \beta, \delta \in \Gamma$.

Since $a \in M$ is nonzero and M is prime, we obtain $a \in C(M)$. Thus by this and (2), the relation (7) reduces to $a \beta[g(y), x]_{\alpha} \delta d(x)=0$, for all $x, y \in M, \alpha, \beta, \delta \in \Gamma$.
Since g is onto, we see that $a \beta z \gamma[u, x]_{\alpha} \delta d(x)=z \beta a \gamma[u, x]_{\alpha} \delta d(x)=0$, for all $x, u, z \in M$, $\alpha, \beta, \delta, \gamma \in \Gamma$. Now by primeness of M, we obtain that $[u, x]_{\alpha} \delta d(x)=0$, for all $x, u \in M$, $\alpha, \beta, \delta \in \Gamma$.

Replacing u by $u \lambda w$, we get $[u, x]_{\alpha} \lambda w \delta d(x)=0$, for all $x, u, w \in M, \alpha, \beta, \delta, \lambda \in \Gamma$. By the primeness of $\mathrm{M},[\mathrm{u}, \mathrm{x}]_{\alpha}=0$ or $\mathrm{d}(\mathrm{x})=0$. Again using the fact that a group cannot be the union of two proper subgroups, it follows that $d=0$, since M is non-commutative, i.e., $[u$, $\mathrm{x}]_{\alpha}$. Hence we see that, in any case, $\mathrm{d}=0$. This completes the proof.

Theorem 3.3

Let M be a prime 2-torsion free Γ-ring satisfying the condition $\left(^{*}\right)$, d is a nonzero semiderivation of M, with associated endomorphism g and $a \in M$. If $g \neq \pm I$ (I is an identity map of $M)$, then $(d(M), a)_{\alpha}=0$ if and only if $d\left((M, a)_{\alpha}\right)=0$.

Proof

Suppose $(d(M), a)_{\alpha}=0$. Firstly, we will prove that $d(a)=0$. If $a=0$ then $d(a)=0$. So we assume that $\mathrm{a} \neq 0$. By our hypothesis, we have $(\mathrm{d}(\mathrm{x}), a)_{\alpha}=0$, for all $\mathrm{x} \in \mathrm{M}, \alpha \in \Gamma$.
From this relation, we get

$$
\begin{align*}
0 & =(d(x \beta a), a)_{\alpha}=(d(x) \beta g(a)+x \beta d(a), a)_{\alpha} \\
& =d(x) \beta[g(a), a]_{\alpha}+(d(x), a)_{\alpha} \beta a+x \beta(d(a), a)_{\alpha}+[x, a]_{\alpha} \beta d(a), \tag{10}
\end{align*}
$$

and so, $[x, a]_{\alpha} \beta d(a)=0$, for all $x \in M, \alpha, \beta \in \Gamma$.
Now, replacing x by $\mathrm{x} \delta \mathrm{y}$ in (10), we get
$[\mathrm{x} \delta \mathrm{y}, \mathrm{a}]_{\alpha} \beta \mathrm{d}(\mathrm{a})=0$, for all $\mathrm{x} \in \mathrm{M}, \alpha, \beta \in \Gamma$. By calculation we get,
$\mathrm{x} \delta[\mathrm{y}, \mathrm{a}]_{\alpha} \beta \mathrm{d}(\mathrm{a})+[\mathrm{x}, \mathrm{a}]_{\alpha} \delta \mathrm{y} \beta \mathrm{d}(\mathrm{a})=[\mathrm{x}, \mathrm{a}]_{\alpha} \delta \mathrm{y} \beta \mathrm{d}(\mathrm{a})=0$, for all $\mathrm{x} \in \mathrm{M}, \alpha, \beta, \delta \in \Gamma$
The primeness of M implies that $[x, a]_{\alpha}=0$ or $d(a)=0$ that is, $a \in C(M)$ or $d(a)=0$.
Now suppose that $a \in C(M)$. Since $(d(a), a)_{\alpha}=0$, we have $d(a) \alpha a+a \alpha d(a)$
$=2 \operatorname{aod}(a)=0$. Since M is 2-torsion free, $\operatorname{a\alpha d}(a)=0$. Since we assumed that $0 \neq a$ and M is a prime Γ-ring, we get $d(a)=0$. Hence we have $d\left((x, a)_{\alpha}\right)$

$$
\begin{aligned}
& =\mathrm{d}(\mathrm{x} \alpha \mathrm{a}+\mathrm{a} \alpha \mathrm{x})=\mathrm{d}(\mathrm{x} \alpha \mathrm{a})+\mathrm{d}(\mathrm{a} \alpha \mathrm{x})=\mathrm{d}(\mathrm{x}) \alpha \mathrm{a}+\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{a})+\mathrm{d}(\mathrm{a}) \alpha \mathrm{g}(\mathrm{x})+\mathrm{a} \alpha \mathrm{~d}(\mathrm{x}) \\
& \left.=(\mathrm{g}(\mathrm{x}), \mathrm{d}(\mathrm{a}))_{\alpha}+(\mathrm{d}(\mathrm{x}), \mathrm{a})_{\alpha}=(\mathrm{d}(\mathrm{x}), \mathrm{a})_{\alpha}\right)=0, \text { for all } \mathrm{x} \in \mathrm{M}, \alpha \in \Gamma . \text { Hence }(\mathrm{d}(\mathrm{x}), \mathrm{a})_{\alpha} \\
& =0
\end{aligned}
$$

Conversely, for all $x \in M$,

$$
0=d\left((a \beta x, a)_{\alpha}\right)=d\left(a \beta(x, a)_{\alpha}+[a, a]_{\alpha} \beta x\right)=d\left(a \beta(x, a)_{\alpha}\right)=d(a) \beta(x, a)_{\alpha}+g(a) \beta d((x), a)_{\alpha} .
$$

We have

$$
\begin{equation*}
d(a) \beta(x, a)_{\alpha}=0, \text { for all } x \in M, \alpha, \beta \in \Gamma \text {. } \tag{12}
\end{equation*}
$$

Replacing x by $\mathrm{x} \delta \mathrm{y}$ in (12), we get

$$
0=d(a) \beta(x \delta y, a)_{\alpha}=d(a) \beta x \delta[y, a]_{\alpha}+d(a) \beta(x, a)_{\alpha} \delta y=d(a) \beta x \delta[y, a]_{\alpha}
$$

This implies that $d(a) \beta x \delta[x, a]_{\alpha}=0$, for all $x \in M, \alpha, \beta, \delta \in \Gamma$.

For the primeness of M, we have either $d(a)=0$ or $a \in C(M)$. If $d(a)=0$,
then we have $0=\mathrm{d}((\mathrm{x}), \mathrm{a})_{\alpha}=(\mathrm{d}(\mathrm{x}), \mathrm{a})_{\alpha}+(\mathrm{d}(\mathrm{a}), \mathrm{g}(\mathrm{x}))_{\alpha}=(\mathrm{d}(\mathrm{x}), \mathrm{a})_{\alpha}$, for all $\mathrm{x} \in \mathrm{M}, \alpha \in \Gamma$.
This yields that $(d(x), a)_{\alpha}=0$. If $a \in C(M)$, then we have $0=d\left((a, a)_{\alpha}\right)$
$=2 d(a) \alpha(a+g(a))$. Since M is 2-torsion free, we obtain $d(a) \alpha(a+g(a))=0$. Since M is prime we have $d(a)=0$ or $a+g(a)=0$. But since g is different from $\neq \pm I$, we find that $d(a)=0$. Finally, $(d(x), a)_{\alpha}=0$ implies the required result.

REFERENCES

1. Bell, H. E. and Martindale, W. S. III, Semiderivations and commutativity in prime rings, Canad. Math. Bull., 31(4), (1988), 500-508.
2. Bergen, J., Derivations in prime rings, Canad. Math. Bull., 26 (1983), 267-270.
3. Bergen, J. and Grzesczuk, P., Skew derivations with central invariants, J. London Math. Soc., 59(2), (1999), 87-99.
4. M. Bresar, On a generalization of the notation of centralizing mappings, Proc. Amer. Math. Soc., 114 (1992), 641-649.
5. Bresar, M., Semiderivations of prime rings, Proc. Amer. Math. Soc., 108 (4) (1990), 859-860.
6. Chang, J.-C., On semi-derivations on prime rings, Chinese J. Math., 12 (1984), 255-262.
7. Chuang, Chen-Lian, on the structure of semiderivations in prime rings, Proc. Amer. Math. Soc., 108 (4) (1990), 867-869.
8. Firat, A., Some results for semi derivations of prime rings, International J. of Pure and Applied Mathematics, 28(3), (2006), 363-368.
