SEMI DERIVATIONS OF PRIME GAMMA RINGS

Kalyan Kumar Dey¹ and Akhil Chandra Paul²

^{1,2}Department of Mathematics Rajshahi University, Rajshahi-6205, Bangladesh ¹kkdmath@yahoo.com; ²acpaulru math@yahoo.com

Received 25.4.2011 Accepted 28.12.2012

ABSTRACT

Let M be a prime Γ -ring satisfying a certain assumption (*). An additive mapping $f : M \to M$ is a semi-derivation if $f(x\alpha y) = f(x)\alpha g(y) + x\alpha f(y) = f(x)\alpha y + g(x)\alpha f(y)$ and f(g(x)) = g(f(x)) for all x, $y \in M$ and $\alpha \in \Gamma$, where g : M \to M is an associated function. In this paper, we generalize some properties of prime rings with semi-derivations to the prime Γ -rings with semi-derivations.

2000 AMS Subject Classifications: 16A70, 16A72, 16A10.

Keywords: Semi derivation, Prime gamma ring, Commuting mapping

1. Introduction

J. C. Chang [6] worked on semi-derivations of prime rings. He obtained some results of derivations of prime rings into semi-derivations. H. E. Bell and W. S. Martindale III [1] investigated the commutativity property of a prime ring by means of semi-derivations. C. L. Chuang [7] studied on the structure of semi-derivations in prime rings. He obtained some remarkable results in connection with the semi-derivations. J. Bergen and P. Grzesczuk [3] obtained the commutativity properties of semiprime rings with the help of skew (semi)-derivations. A. Firat [8] generalized some results of prime rings with derivations to the prime rings with semi-derivations.

In this paper, we generalize some results of prime rings with semi-derivations to the prime Γ -rings with semi-derivations.

2. Preliminaries

Let *M* and Γ be additive abelian groups. *M* is called a Γ -ring if for all *x*, *y*, $z \in M$, $\alpha, \beta \in \Gamma$ the following conditions are satisfied:

- (i) $x\beta y \in M$,
- (ii) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)y = x\alpha y + x\beta y$, $x\alpha(y + z) = x\alpha y + x\alpha z$,
- (iii) $(x \alpha y)\beta z = x \alpha (y \beta z)$.

Let M be a Γ -ring with center C(M). For any x, $y \in M$, the notation $[x, y]_{\alpha}$ and $(x, y)_{\alpha}$ will denote $x\alpha y - y\alpha x$ and $x\alpha y + y\alpha x$ respectively. We know that $[x\beta y, z]_{\alpha} = x\beta[y,z]_{\alpha} + [x,z]_{\alpha}\beta y + x[\beta,\alpha]_z y$ and $[x,y\beta z]_{\alpha} = y\beta[x,z]_{\alpha} + [x,y]_{\alpha}\beta z + y[\beta,\alpha]_x z$, for all $x,y,z \in M$ and for

all $\alpha,\beta\in\Gamma$. We shall take an assumption (*) $x\alpha y\beta z = x\beta y\alpha z$ for all $x,y,z\in M$, $\alpha,\beta\in\Gamma$. Using the assumption (*) the identities $[x\beta y, z]_{\alpha} = x\beta[y,z]_{\alpha} + [x,z]_{\alpha}\beta y$ and $[x,y\beta z]_{\alpha} = y\beta[x,z]_{\alpha} + [x,y]_{\alpha}\beta z$, for all $x,y,z\in M$ and for all $\alpha,\beta\in\Gamma$ are used extensively in our results. So we make extensive use of the basic commutator identities: $(x\beta y, z)_{\alpha} = (x, z)_{\alpha}\beta y + x\beta[y, z]_{\alpha} = [x, z]_{\alpha}\beta y + x\beta(y, z)_{\alpha}$. A Γ -ring M is to be n-torsion free if nx = 0, $x\in M$ implies x = 0. Recall that a Γ -ring M is prime if $x\Gamma M\Gamma y = 0$ implies that x = 0 or y = 0.

A mapping D from M to M is said to be commuting on M if $[D(x), x]_{\alpha} = 0$ holds for all $x \in M$, $\alpha \in \Gamma$, and is said to be centralizing on M if $[D(x), x]_{\alpha} \in C(M)$ holds for all $x \in M$, $\alpha \in \Gamma$. An additive mapping D from M to M is called a derivation if $D(x\alpha y) = D(x)\alpha y + x\alpha D(y)$ holds for all $x, y \in M$, $\alpha \in \Gamma$.

Let M be a Γ -ring. An additive mapping d: M \rightarrow M, is called a semi-derivation associated with a function g: M \rightarrow M, if, for all x, y \in M, $\alpha \in \Gamma$,

(i)
$$d(x\alpha y) = d(x)\alpha g(y) + x\alpha d(y) = d(x)\alpha y + g(x)\alpha d(y)$$
,

(ii) d(g(x)) = g(d(x)).

If g = I, i.e., an identity mapping of M, then all semi-derivations associated with g are merely ordinary derivations. If g is any endomorphism of M, then other examples of semi-derivations are of the form d(x) = x - g(x).

Example 2.1

Let M_1 be a Γ_1 ring and M_2 be a Γ_2 -ring. Consider $M = M_1 \times M_2$ and $\Gamma = \Gamma_1 \times \Gamma_2$.

Define addition and multiplication on M and Γ by

$$(m_1, m_2) + (m_3, m_4) = (m_1 + m_3, m_2 + m_4),$$

$$(\alpha_1, \alpha_2) + (\alpha_3, \alpha_4) = (\alpha_1 + \alpha_3, \alpha_2 + \alpha_4),$$

$$(m_1, m_2)(\alpha_1, \alpha_2)(m_3, m_4) = (m_1\alpha_1m_3, m_2\alpha_2m_4),$$

for every (m_1, m_2) , $(m_3, m_4) \in M$ and (α_1, α_2) , $(\alpha_3, \alpha_4) \in \Gamma$.

Under these addition and multiplication M is a Γ -ring. Let δ : $M_1 \rightarrow M_1$ be an additive map and τ : $M_2 \rightarrow M_2$ be a left and right M_2^{Γ} -module which is not a derivation. Define d: $M \rightarrow M$ such that $d((m_1, m_2)) = (0, \tau(m_2))$ and g: $M \rightarrow M$ such that $g((m_1, m_2)) = (\delta(m_1), 0), m_1 \in M_1, m_2 \in M_2$. Then it is clear that d is a semi-derivation of M (with associated map g) which is not a derivation.

3. Semi Derivations of Prime Γ-rings

We obtain our results.

Lemma 3.1

Let M be a prime Γ -ring satisfying the assumption (*) and let m \in M. If

 $[[m, x]_{\alpha}, x]_{\alpha} = 0$ for all $x \in M$, $\alpha \in \Gamma$, then $x \in C(M)$.

Proof

A linearization of $[[m, x]_{\alpha}, x]_{\alpha} = 0$ for all $x \in M$, $\alpha \in \Gamma$, gives

 $[[m, x]_{\alpha}, y]_{\alpha} + [[m, y]_{\alpha}, x]_{\alpha} = 0$ for all $x, y \in M, \alpha \in \Gamma$.

Replacing y by y βx in (1) and using $[[m, x]_{\alpha}, x]_{\alpha} = 0$ for all $x \in M$, $\alpha \in \Gamma$, we obtain

 $0 = [[m, x]_{\alpha}, y\beta x]_{\alpha} + [[m, y\beta x]_{\alpha}, x]_{\alpha} = [[m, x]_{\alpha}, y]_{\alpha}\beta x + [[m, y]_{\alpha}\beta x + y\beta [m, x]_{\alpha}$

 $= [[m, x]_{\alpha}, y]_{\alpha}\beta x + [[m, y]\alpha, x]_{\alpha}\beta x + [y, x]_{\alpha}\beta [m, x]_{\alpha}, \text{ for all } x \in M, \alpha \in \Gamma,$

Applying (1), we then get $[y, x]_{\alpha}\beta[m, x]_{\alpha} = 0$, for all $x \in M$, $\alpha \in \Gamma$. Taking $y\beta z$ for y in this relation and using $[y\beta z, x]_{\alpha} = [y, x]_{\alpha}\beta z + y\beta[z, x]_{\alpha}$, we see that

 $[y, x]_{\alpha}\beta z\beta[m, x]_{\alpha} = 0$, for all x, y, $z \in M$, $\alpha \in \Gamma$. In particular, $[m, x]_{\alpha}\beta z\beta[m,x]_{\alpha} = 0$, for all $x \in M$, $\alpha \in \Gamma$. Since M is prime, $[m, x]_{\alpha} = 0$. This implies $x \in C(M)$.

Theorem 3.2

Let M be a non-commutative 2-torsion free prime Γ -ring satisfying the condition (*) and d is a semi-derivation of M with g: M \rightarrow M is an onto endomorphism. If the mapping x $\rightarrow [a\beta d(x), x]_{\alpha}$ for all $\alpha, \beta \in \Gamma$, is commuting on M, then a = 0 or d = 0.

Proof

Firstly, we assume that *a* be a nonzero element of M. Then we know that the mapping $x \rightarrow [a\beta d(x), x]_{\alpha}$ is commuting on M. Thus we have $[[a\beta d(x), x]_{\alpha}, x]_{\alpha} = 0$. By lemma 3.1, we have

$$[a\beta d(x), x]_{\alpha} = 0, \text{ for all } x \in M, \alpha, \beta \in \Gamma.$$
(2)

By linearizing (2), we have

$$[a\beta d(x), y]_{\alpha} + [a\beta d(y), x]_{\alpha} = 0, \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$$
(3)

From this relation it follows that

 $a\beta[d(x), y]_{\alpha} + [a, y]_{\alpha}\beta d(x) + a\beta[d(y), x]_{\alpha} + [a, x]_{\alpha}\beta d(y) = 0, \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$ (4)

Replacing y by $y\delta x$ in (3) and using (2), we get

 $[a\beta d(x), y\delta x]_{\alpha} + [a\beta d(y\delta x), x]_{\alpha} = 0$, for all $x, y \in M, \alpha, \beta \in \Gamma$.

We get

$$y\delta[a\beta d(x), x]_{\alpha} + [a\beta d(x), y]_{\alpha}\delta x + [a\beta(d(y)\delta x + g(y)\delta d(x)), x]_{\alpha}$$

 $= [a\beta d(x), y]_{\alpha} \delta x + [a\beta d(y)\delta x, x]_{\alpha} + [a\beta g(y)\delta d(x), x]_{\alpha}$

 $= a\beta[d(x), y]_{\alpha}\delta x + [a, y]_{\alpha}\beta d(x)\delta x + a\beta d(y)\delta[x, x]_{\alpha} + [a\beta d(y), x]_{\alpha}\delta x +$

 $a\beta g(y)\delta[d(x), x]_{\alpha} + [a\beta g(y), x]_{\alpha}\delta d(x)$

$$= a\beta[d(x), y]_{\alpha}\delta x + [a, y]_{\alpha}\beta d(x)\delta x + a\beta[d(y), x]_{\alpha}\delta x + [a, x]_{\alpha}\beta d(y)\delta x + a\beta g(y)\delta[d(x), x]_{\alpha} + a\beta[g(y), x]_{\alpha}\delta d(x) + [a, x]_{\alpha}\beta g(y)\delta d(x) = 0 \text{ for all } x, y \in M, \alpha, \beta \in \Gamma.$$
(5)

(1)

```
Right multiplication of (3) by \delta x gives
```

 $a\beta[d(x), y]_{\alpha}\delta x + [a, y]_{\alpha}\beta d(x)\delta x + a\beta[d(y), x]_{\alpha}\delta x + [a, x]_{\alpha}\beta d(y)\delta x = 0, \text{ for all } x, y \in M,$ (6)

Subtracting (6) from (5), we obtain

$$a\beta g(y)\delta[d(x), x]_{\alpha} + a\beta[g(y), x]_{\alpha}\delta d(x) + [a, x]_{\alpha}\beta g(y)\delta d(x) = 0 \text{ for all } x, y \in M, \alpha, \beta, \delta \in \Gamma.$$

(7)

Taking $a\lambda g(y)$ instead of g(y) in (7), we have

$$\begin{split} a\beta a\lambda g(y)\delta[d(x), x]_{\alpha} &+ a\beta[a\lambda g(y), x]_{\alpha}\delta d(x) + [a, x]_{\alpha}\beta a\lambda g(y)\delta d(x) \\ &= a\beta a\lambda g(y)\delta[d(x), x]_{\alpha} + a\beta a\lambda[g(y), x]_{\alpha}\delta d(x) + a\beta[a, x]_{\alpha}\lambda g(y)\delta d(x) \\ &+ [a, x]_{\alpha}\beta a\lambda g(y)\delta d(x) \\ &= a\beta a\lambda g(y)\delta[d(x), x]_{\alpha} + a\beta a\lambda[g(y), x]_{\alpha}\delta d(x) + a\beta[a, x]_{\alpha}\lambda g(y)\delta d(x) \\ &+ [a, x]_{\alpha}\beta a\lambda g(y)\delta d(x) \\ &= 0 \text{ for all } x, y \in M, \alpha, \beta, \lambda, \delta \in \Gamma. \end{split}$$

$$(8)$$

Left multiplication of (6) by $a\lambda$ leads to

$$\begin{split} &a\lambda a\beta g(y)\delta[d(x), x]_{\alpha} + a\lambda a\beta[g(y), x]_{\alpha}\delta d(x) + a\lambda[a, x]_{\alpha}\beta g(y)\delta d(x) \\ &= a\beta a\lambda g(y)\delta[d(x), x]_{\alpha} + a\beta a\lambda[g(y), x]_{\alpha}\delta d(x) + a\beta[a, x]_{\alpha}\lambda g(y)\delta d(x) = 0 \text{ for all } x, y \in M, \\ &\alpha, \beta, \delta, \lambda \in \Gamma. \end{split}$$

Subtracting (9) from (8), we get $[a, x]_{\alpha}\beta a\lambda g(y)\delta d(x) = 0$ for all $x, y \in M, \alpha, \beta, \lambda, \delta \in \Gamma$.

Since M is prime, we obtain that for any $x \in M$ either d(x) = 0 or $[a, x]_{\alpha} = 0$.

It means that M is the union of its additive subgroups $P = \{x \in M: d(x) = 0\}$

and $Q = \{x \in M: [a, x]_{\alpha}\beta a = 0\}$. Since a group cannot be the union of two proper subgroups, we find that either P = M or Q = M.

If P = M, then d = 0. If Q = M, then this implies that $[a, x]_{\alpha}\beta a = 0$, for all $x \in M$, $\alpha, \beta \in \Gamma$.

Let us take xδy instead of x in this relation. Then we get $[a, x\delta y]_{\alpha}\beta a = 0$, for all $x \in M$, $\alpha, \beta \in \Gamma$.

We get $[a, x\delta y]_{\alpha}\beta a = x\delta[a, y]_{\alpha}\beta a + [a, x]_{\alpha}\delta y\beta a = [a, x]_{\alpha}\delta y\beta a = 0$, for all x, $y \in M$, $\alpha, \beta, \delta \in \Gamma$.

Since $a \in M$ is nonzero and M is prime, we obtain $a \in C(M)$. Thus by this

and (2), the relation (7) reduces to $a\beta[g(y), x]_{\alpha}\delta d(x) = 0$, for all x, $y \in M$, $\alpha, \beta, \delta \in \Gamma$.

Since g is onto, we see that $a\beta z\gamma[u, x]_{\alpha}\delta d(x) = z\beta a\gamma[u, x]_{\alpha}\delta d(x) = 0$, for all x, u, $z \in M$, $\alpha,\beta,\delta,\gamma\in\Gamma$. Now by primeness of M, we obtain that $[u, x]_{\alpha}\delta d(x) = 0$, for all x, $u \in M$, $\alpha,\beta,\delta\in\Gamma$.

Semi Derivations of Prime Gamma Rings

Replacing u by u λw , we get $[u, x]_{\alpha}\lambda w\delta d(x) = 0$, for all x, u, $w \in M$, α , β , δ , $\lambda \in \Gamma$. By the primeness of M, $[u, x]_{\alpha} = 0$ or d(x) = 0. Again using the fact that a group cannot be the union of two proper subgroups, it follows that d = 0, since M is non-commutative, i.e., $[u, x]_{\alpha}$. Hence we see that, in any case, d = 0. This completes the proof.

Theorem 3.3

Let M be a prime 2-torsion free Γ -ring satisfying the condition (*), d is a nonzero semiderivation of M, with associated endomorphism g and $a \in M$. If $g \neq \pm I$ (I is an identity map of M), then $(d(M), a)_{\alpha} = 0$ if and only if $d((M, a)_{\alpha}) = 0$.

Proof

Suppose $(d(M), a)_{\alpha} = 0$. Firstly, we will prove that d(a) = 0. If a = 0 then d(a) = 0. So we assume that $a \neq 0$. By our hypothesis, we have $(d(x), a)_{\alpha} = 0$, for all $x \in M$, $\alpha \in \Gamma$.

From this relation, we get

$$0 = (d(x\beta a), a)_{\alpha} = (d(x)\beta g(a) + x\beta d(a), a)_{\alpha}$$

= d(x)\beta[g(a), a]_{\alpha} + (d(x), a)_{\alpha}\beta a + x\beta(d(a), a)_{\alpha} + [x, a]_{\alpha}\beta d(a),

and so, $[x, a]_{\alpha}\beta d(a) = 0$, for all $x \in M$, $\alpha, \beta \in \Gamma$.

(10)

Now, replacing x by $x\delta y$ in (10), we get

 $[x \delta y, a]_{\alpha} \beta d(a) = 0$, for all $x \in M$, $\alpha, \beta \in \Gamma$. By calculation we get,

$$x\delta[y, a]_{\alpha}\beta d(a) + [x, a]_{\alpha}\delta y\beta d(a) = [x, a]_{\alpha}\delta y\beta d(a) = 0, \text{ for all } x \in M, \alpha, \beta, \delta \in \Gamma$$
(11)

The primeness of M implies that $[x, a]_{\alpha} = 0$ or d(a) = 0 that is, $a \in C(M)$ or d(a) = 0.

Now suppose that $a \in C(M)$. Since $(d(a), a)_{\alpha} = 0$, we have $d(a)\alpha a + a\alpha d(a)$

= $2\alpha\alpha d(a) = 0$. Since M is 2-torsion free, $\alpha\alpha d(a) = 0$. Since we assumed that $0 \neq a$ and M is a prime Γ -ring, we get d(a) = 0. Hence we have $d((x, a)_{\alpha})$

$$= d(x\alpha a + a\alpha x) = d(x\alpha a) + d(a\alpha x) = d(x)\alpha a + g(x)\alpha d(a) + d(a)\alpha g(x) + a\alpha d(x)$$

$$= (g(x), d(a))_{\alpha} + (d(x), a)_{\alpha} = (d(x), a)_{\alpha}) = 0, \text{ for all } x \in M, \alpha \in \Gamma. \text{ Hence } (d(x), a)_{\alpha} = 0$$

Conversely, for all $x \in M$,

$$0 = d((a\beta x, a)_{\alpha}) = d(a\beta(x, a)_{\alpha} + [a, a]_{\alpha}\beta x) = d(a\beta(x, a)_{\alpha}) = d(a)\beta(x, a)_{\alpha} + g(a)\beta d((x), a)_{\alpha}.$$

We have

 $d(a)\beta(x, a)_{\alpha} = 0$, for all $x \in M$, $\alpha, \beta \in \Gamma$.

(12)

Replacing x by $x\delta y$ in (12), we get

 $0 = d(a)\beta(x\delta y, a)_{\alpha} = d(a)\beta x\delta[y, a]_{\alpha} + d(a)\beta(x, a)_{\alpha}\delta y = d(a)\beta x\delta[y, a]_{\alpha}.$

This implies that $d(a)\beta x \delta[x, a]_{\alpha} = 0$, for all $x \in M$, $\alpha, \beta, \delta \in \Gamma$.

For the primeness of M, we have either d(a) = 0 or $a \in C(M)$. If d(a) = 0,

then we have $0 = d((x), a)_{\alpha} = (d(x), a)_{\alpha} + (d(a), g(x))_{\alpha} = (d(x), a)_{\alpha}$, for all $x \in M$, $\alpha \in \Gamma$.

This yields that $(d(x), a)_{\alpha} = 0$. If $a \in C(M)$, then we have $0 = d((a, a)_{\alpha})$

= $2d(a)\alpha(a + g(a))$. Since M is 2-torsion free, we obtain $d(a)\alpha(a + g(a)) = 0$. Since M is prime we have d(a) = 0 or a + g(a) = 0. But since g is different from $\neq \pm I$, we find that d(a) = 0. Finally, $(d(x), a)_{\alpha} = 0$ implies the required result.

REFERENCES

- 1. Bell, H. E. and Martindale, W. S. III, Semiderivations and commutativity in prime rings, Canad. Math. Bull., 31(4), (1988), 500-508.
- 2. Bergen, J., Derivations in prime rings, Canad. Math. Bull., 26 (1983), 267-270.
- 3. Bergen, J. and Grzesczuk, P., Skew derivations with central invariants, J. London Math. Soc., 59(2), (1999), 87-99.
- 4. M. Bresar, On a generalization of the notation of centralizing mappings, Proc. Amer. Math. Soc., 114 (1992), 641-649.
- 5. Bresar, M., Semiderivations of prime rings, Proc. Amer. Math. Soc., 108 (4) (1990), 859-860.
- 6. Chang, J.-C., On semi-derivations on prime rings, Chinese J. Math., 12 (1984), 255-262.
- Chuang, Chen-Lian, on the structure of semiderivations in prime rings, Proc. Amer. Math. Soc., 108 (4) (1990), 867-869.
- 8. Firat, A., Some results for semi derivations of prime rings, International J. of Pure and Applied Mathematics, 28(3), (2006), 363-368.