TL-IDEALS OF TL-SUBNEAR-RINGS

J.D. Yadav.

S.G.M.College, Karad, Maharashtra, India Email: jdy1560@yahoo.co.in

Y.S. Pawar.

Department Of Mathematics, Shivaji University, Kolhapur, Maharashtra, India Email: y_s_pawar@yahoo.com

Received 20.07.2011

Accepted 08.01.2012

ABSTRACT

The aim of this paper is to introduce and study TL-ideals of TL-subnear-rings. Also we define T-sum, T-difference and T-product of L-subsets of a near-ring R and obtain their properties.

Key words: Fuzzy set, TL-subnear-ring, TL-ideal, Homomorphism, Near-ring

1. Introduction

Near-Ring is a generalized structure of a ring. The theory of fuzzy sets was introduced by Zadeh [15] .The fuzzy set theory has been developed in many directions by the research scholars. Goguen [9] introduced the concept of L-fuzzy sets. Rosenfeld [13] first introduced the fuzzification of the algebraic structures and defined fuzzy subgroups. Anthony and Sherwood [3], Asaad and Abou-zaid [4], Akgul [2], Das [6], Dixit, Bhambri and Kumar [7] contributed the theory of fuzzy subgroups. Fuzzy ideals of rings are first defined by Liu. [11] and the study was continued by many other researchers to extend the concepts.

Abou-Zaid [1] introduced the notion of fuzzy R-subgroups and fuzzy ideals of near-rings. Dutta and Biswas [8] introduced fuzzy and fuzzy cosets of fuzzy ideals of near-rings. Cheng, Mordeson and Yandong [5] have discussed TL-subnear-rings and TL-ideals of a ring.

As in ring theory, it is interesting to fuzzify some substructures of near-ring. Hence our aim in this paper is to study TL-ideals of TL-subnear-rings and to characterize them.

2. Preliminaries

We recall some definitions for the sake of completeness.

Definition (2.1) [10]:By a near-ring we mean a non-empty set R with two binary operations '+' and '.' satisfying the following axioms:

(i) (R, +) is a group,

(ii) (\mathbf{R}, \cdot) is a semi-group,

(iii) $x \cdot (y + z) = x \cdot y + x \cdot z$ for all $x, y, z \in R$.

Precisely speaking, it is a left near-ring because it satisfies the left distributive law. We will use the word "near-ring" instead of "left near-ring". We denote xy instead of x \cdot y. Note that x0 = 0 and x (-y) = - xy, but 0x \neq 0 for x, y \in R.

Definition (2.2) [1, 8]: An ideal I of a near-ring R is a subset of R such that

(i) (I, +) is a normal subgroup of (R, +),

(ii) $RI \subseteq I$,

(iii) (r + i) s - rs \in I for all $i \in$ I and r, s \in R.

Note that if I satisfies (i) and (ii) then it is called a left ideal of R.

If I satisfies (i) and (iii) then it is called a right ideal of R.

Definition (2.3): A binary operation T on a lattice L is called a t-norm if it satisfies the following conditions:

- (i) T (T (a, b), c) = T (a, T (b, c)),
- (ii) T(a, b) = T(b, a),
- (ii) $b \le c \Rightarrow T(a,b) \le T(a,c)$,

(iv) T (a, 1) = a,

for all $a, b, c \in L$.

Definition (2.4): A fuzzy set μ in a near-ring R is a function μ : R \rightarrow [0, 1].

Definition (2.5): Let μ be a fuzzy set in a near-ring R and $t \in [0, 1]$. Then the crisp set $\mu_t = \{x \in R \mid \mu(x) \ge t\}$ is called a t-level subset or t-cut of μ .

3. TL-ideals of TL-subnear-ring

Let R be a near-ring and L be a complete lattice.

Definition (3.1)[14]: An L-subset μ of a near-ring R is called a TL-subgroup of R if it satisfies the following conditions:

(i) μ (0) = 1, (ii) μ (-x) $\geq \mu$ (x), (iii) μ (x+y) $\geq \mu$ (x) T μ (y).

for all $x, y \in R$.

Definition (3.2)[14]: An L-subset μ of a near-ring R is called a TL- subnear-ring of R if it satisfies the following conditions:

80

(i)
$$\mu$$
 (0) = 1,
(ii) μ (-x) $\geq \mu$ (x),
(iii) μ (x+y) $\geq \mu$ (x) T μ (y),
(iv) μ (xy) $\geq \mu$ (x) T μ (y) for all x,y \in R.

Remarks (3.3): (i) When $T = \wedge$, a TL-subnear-ring is called L-subnear-ring.

(ii) The set of all TL- subnear-rings of R and set of all L- subnear-rings of R are denoted by TL(R) and L(R) respectively.

(iii) If L = [0, 1], TL- subnear-ring and L- subnear-ring of R are known as T-fuzzy subnear-ring and fuzzy subnear-ring of R respectively.

Definition (3.4)[14]: An L-subset μ of a near-ring R is called a TL-ideal of R if

(i)
$$\mu$$
 (0) = 1,
(ii) μ (-x) $\geq \mu$ (x),
(iii) μ (x + y) $\geq \mu$ (x) T μ (y),
(iv) μ (y + x - y) $\geq \mu$ (x),
(v) μ (xy) $\geq \mu$ (y),
(vi) μ ((x + i)y - xy) $\geq \mu$ (i) for

for all $x, y, i \in R$.

Remarks (3.5) : (i) If μ satisfies (i), (ii), (iii), (iv) and (v) then it is TL-left ideal of R and if μ satisfies (i), (ii), (iii), (iv) and (vi) then it is TL-right ideal of R.

- (ii) When $T = \wedge$, a TL-left ideal and TL-right ideal are known as L-left ideal and L-right ideal respectively.
- (iii) The set of all TL- left ideals and TL-right ideals of R are denoted by $TLI_1(R)$ and $TLI_r(R)$ respectively.
- (iv) When $T = \wedge$, set of all L- left ideals and L-right ideals of R are denoted by $LI_1(R)$ and $LI_r(R)$ respectively.
- (v) When L = [0, 1] TL-left ideals and TL-right ideals are known as T-fuzzy left ideals and T-fuzzy right ideals of R respectively and when $T = \wedge$, they are known as fuzzy left ideals and fuzzy right ideals of R respectively.

Now we define TL-ideals of TL-subnear-rings:

Definition (3.6): A function μ : $R \rightarrow L$ is called an L-subset of R.

The set of all L-subsets of R is called the L-power set of R and is denoted by L^{R} .

Definition (3.7): Let $\mu \in L^R$, $\gamma \in TL(R)$ and $\mu \leq \gamma$. Then

- (1) μ is a TL-left ideal of γ if
 - (i) μ is a normal TL-subgroup of (R,+),
 - (ii) $\mu(xy) \ge \gamma(x)T \mu(y)$ for all $x, y \in \mathbb{R}$.
- (2) μ is a TL-right ideal of γ if
 - (i) μ is a normal TL-subgroup of (R,+),
 - (ii) $\mu((x+i)y xy) \ge \mu(i) T \gamma(y)$ for all x, y, $i \in \mathbb{R}$.
- (3) μ is said to be TL-two sided or TL-ideal of γ if
 - (i) μ is a normal TL-subgroup of (R,+),
 - (ii) μ is both TL-left and TL-right ideal of γ .

Remark (3.8): When $T = \wedge$ these ideals will be called as L-left, L-right and

L-two sided ideals of γ respectively.

Theorem (3.9): An L-subset $\mu \in L^{R}$ is a TL-right (resp.TL-left) ideal of R if and only if μ is a TL-right (resp.TL-left) ideal of the TL-subnear-ring 1_{R} .

Proof: Part (I): Let $\mu \in L^{R}$ be a TL-right ideal of R.

Then $\mu((x+i)y - xy) \ge \mu(i) \le \text{ for all } x, y, i \in \mathbb{R}$.

Now $\mu(i)$ T 1_R (y) $\leq \mu(i) \wedge 1_R$ (y) = $\mu(i)$.

 $\Rightarrow \mu(i) T 1_R(y) \le \mu(i) \le \mu((x+i)y - xy).$

i.e. $\mu((x+i)y - xy) \ge \mu(i) T 1_R(y)$ for all x, y, $i \in R$.

Hence μ is a TL-right ideal of the TL-subnear-ring 1_R .

Conversely let μ be a TL-right ideal of the TL-subnear-ring 1_R .

Therefore $\mu((x+i)y - xy) \ge \mu(i) T 1_R(y)$ for all x, y, $i \in R$.

 $\Rightarrow \mu((x+i)y - xy) \ge \mu(i) T 1_R(y) = \mu(i).$

 $\Rightarrow \mu((x+i)y - xy) \ge \mu(i)$ for all x, y, $i \in \mathbb{R}$.

Hence μ is a TL-right ideal of R.

Part (II): Let $\mu \in L^R$ be a TL-left ideal of R.

Then μ is a normal TL-subgroup of (R, +) and μ (xy) $\geq \mu$ (y).

Therefore $1_R(x) T \mu(y) \le 1_R(x) \land \mu(y) = \mu(y)$ for all $x, y \in R$.

 $\Rightarrow 1_{R}(x) T \mu(y) \le \mu(y) \le \mu(xy).$

Hence μ is a TL-left ideal of the TL-subnear-ring 1_R .

Conversely let μ be a TL-left ideal of the TL-subnear-ring 1_R .

TL-Ideals of TL-Subnear-Rings

Therefore $\mu(xy) \ge 1_R(x) T \mu(y) = \mu(y)$.

Hence μ is a TL-left ideal of R.

Theorem (3.10): Let $\mu \in L^R$ and $\gamma \in L(R)$. If μ is L- right (resp.L-left) ideal of γ then for every $a \in L$, μ_a is a right (resp. left) ideal of γ_a .

Proof: Part (I): Let μ be L-right ideal of γ .

Then μ ((x+i) y -xy) $\geq \mu$ (i) T γ (y).

Let $x \in \mu_a$ and $y \in \gamma_a$.

Then $x \in \mu_a$ and $y \in \gamma_a$. $\Rightarrow \mu(x), \gamma(y) \ge a$.

Therefore μ (y+x-y) = μ (x) ≥ a for all x ∈ μ _a and y ∈ γ _a.

 \Rightarrow y+x-y $\in \mu_a$ for all x $\in \mu_a$ and y $\in \gamma_a$.

Hence μ_a is a normal L-subgroup of (γ_a ,+).

Now let $i \in \mu_a$ and $x, y \in \gamma_a$

Then $\mu(i) \ge a$ and $\gamma(x) \ge a$, $\gamma(y) \ge a$.

since $\mu((x+i)y - xy) \ge \mu(i) \land \gamma(y) \ge a$.

Therefore $(x+i) y - xy \in \mu_a$ for all $i \in \mu_a$ and $x, y \in \gamma_a$.

Hence μ_a is a right ideal of γ_a .

Part (II): Let μ be L- left ideal of γ .

Let $x \in \mu_a$ and $y \in \gamma_a$.

Then $x \in \mu_a$ and $y \in \gamma_a \Longrightarrow \mu(x), \gamma(y) \ge a$.

Then $\mu(y+x-y) \ge \mu(x) \ge a$ for all $x \in \mu_a$ and $y \in \gamma_a$.

Therefore $y+x-y \in \mu_a$ for all $x \in \mu_a$ and $y \in \gamma_a$.

Hence $(\mu_a, +)$ is a normal L-subgroup of $(\gamma_a, +)$.

Now let $y \in \mu_a$ and $x \in \gamma_a$

Since $\mu(xy) \ge \gamma(x) \land \mu(y)$.

Therefore $\mu(xy) \ge \gamma(x) \land \mu(y) \ge a$.

Thus $xy \in \mu_a$ for all $y \in \mu_a$ and $x \in \gamma_a$.

Hence μ_a is a left ideal of γ_a .

Remark (3.11): The converse of the theorem is true only when $\mu \in L^{R}$ is a normal L-subgroup of (R, +).

Theorem (3.12): Let $\mu \in L^R, \gamma \in L(R)$ and L be a chain. Then a necessary condition for μ to

be a L-right (resp.L-left) ideal of γ is that for every $a \in L \setminus \{1\}$, $\mu_{[a]}$ is a right (resp. left) ideal of $\gamma_{[a]}$.

Proof: Part (I): Let μ be a L-right ideal of γ . Then

(i) $\mu(0) = 1$ implies that $0 \in \mu_{[a]}$ for every $a \in L \setminus \{1\}$.

(ii) $\mu(-x) \ge \mu(x)$ for $x \in \mu_{[a]}$ implies that $-x \in \mu_{[a]}$.

(iii) Let $x, y \in \mu_{[a]}$. Then $\mu(x) > a$, $\mu(y) > a$

But L is a chain, therefore either $\mu(x) \ge \mu(y)$ or $\mu(y) \ge \mu(x)$.

Assume that $\mu(y) \ge \mu(x)$.

As $\mu(x+y) \ge \mu(x) \land \mu(y) = \mu(x) > a$. Therefore $x + y \in \mu_{[a]}$ for all $i \in x, y \in \mu_{[a]}$.

Hence $\mu_{[a]}$ is a L-subgroup of R.

(iv) If $\mu_{[a]}$ is not normal then for some $a \in L \setminus \{1\}$, there exists $y \in R$ and $x \in \mu_{[a]}$ such that $y+x-y \notin \mu_{[a]}$. Thus $\mu(x) > a$ and $\mu(y+x-y) \le a$.

Hence $\mu(y+x-y) < \mu(x)$ and hence μ is not normal which is a contradiction.

Thus $\mu_{[a]}$ is a normal subgroup of R for all $a \in L \setminus \{1\}$.

(v) Again if $\mu_{[a]}$ is not a right ideal of $\gamma_{[a]}$ then for some $a \in L \setminus \{1\}$, there exists $x, y \in R$ and $i \in \mu_{[a]}$ such that (x+i)y- $xy \notin \mu_{[a]}$

Thus $\mu(i) > a$ and $\mu((x+i)y - xy) \le a$.

This implies that μ is not L-right ideal.

Thus we get a contradiction.

Hence $\mu((x+i)y - xy) > a$ for all $i \in \mu_{[a]}$ and $x, y \in \gamma_{[a]}$.

Hence $\mu_{[a]}$ is a right ideal of $\gamma_{[a]}$.

Part (II): Let μ be a L-left ideal of γ .

Then as in part (I), $(\mu_{[a]}, +)$ is a normal L-subgroup of (R,+).

Again if $\mu_{[a]}$ is not a left ideal of $\gamma_{[a]}$ then for some $a \in L \setminus \{1\}$, there exists $y \in \mu_{[a]}$ and $x \in \gamma_{[a]}$ such that $xy \notin \mu_{[a]}$.

Then $\mu(y) > a$ and $\mu(xy) \le a$. Thus $\mu(xy) \le \mu(y)$

Therefore $xy \notin \mu_{[a]}$ for $y \in \mu_{[a]}$, $x \in \gamma_{[a]}$, which is a contradiction.

Hence $\mu_{[a]}$ is a right ideal of $\gamma_{[a]}$.

Theorem (3.13): Let $\mu \in L^R$ and $\gamma \in L(R)$ and L be dense. Then a sufficient condition for μ to be a L-right (resp.L-left) ideal of γ is that for every $a \in L \setminus \{1\}$, $\mu_{[a]}$ is a right (resp. left) ideal of $\gamma_{[a]}$.

Proof: Part (I): Let us suppose that for every $a \in L \setminus \{1\}$, $\mu_{[a]}$ is a right ideal of $\gamma_{[a]}$.

TL-Ideals of TL-Subnear-Rings

- (i) Clearly μ (0) = 1.
- (ii) Take $a \le \mu(x)$. Then $x \in \mu_{[a]}$ implies $-x \in \mu_{[a]}$.

 $\Rightarrow \mu(-x) > a \Rightarrow \mu(-x) \ge 1$ and $\mu(x) > a$.

 $\Rightarrow \mu(-x) \ge \mu(x)$ for all $x \in \mu_{[a]}$.

- (iii) Now suppose x, $y \in \mu_{[a]}$
- Let $\mu(x) \wedge \mu(y) > a$.
- Therefore $\mu(x) > \mu(x) \land \mu(y)$.

 $\Rightarrow \mu(x) > a \Rightarrow x \in \mu_{[a]}$. Similarly $y \in \mu_{[a]}$.

Hence $x+y \in \mu_{[a]}$ and so $\mu(x+y) > a$.

Let $a = \mu(x) \land \mu(y)$.

If a = 0 then $\mu(x + y) \ge 0 = \mu(x) \land \mu(y)$.

If a > 0 then for any $b \in L$, b < a we observe that $\mu_{[b]}$ is a right ideal of R

and $x, y \in \mu_{[b]}$ implies that $\mu(x+y) \in \mu_{[b]}$.

i.e. $\mu(x+y) > b \Longrightarrow \mu(x+y) \ge \lor \{b \mid b \in L, b < a\}.$

Since L is dense, $\lor \{b | b \in L, b < a\} = a$.

Therefore $\mu(x+y) \ge a = \mu(x) \land \mu(y)$ for all $x, y \in \mu_{[a]}$.

(iv) Now let $y \in \gamma_{[a]}$ and $x \in \mu_{[a]}$ and let a > 0.

Then for any $b \in L$, b < a we observe that $(\mu_{[b]}, +)$ is a normal subgroup of (R, +), $x \in \mu_{[b]}$, implies $\mu(y+x-y) > b$.

Thus μ (y+x-y) $\geq \forall \{b | b \in L, b \leq a\}$.

Since L is dense, $\lor \{b | b \in L, b < a\} = a$.

Therefore μ (y+x-y) $\geq \mu$ (x) for all $i \in \mu_{[a]}$, $y \in \gamma_{[a]}$.

(v) Finally, let $i \in \mu_{[a]}$ and $x, y \in \gamma_{[a]}$.

If a = 0 then clearly $\mu((x + i) y - xy) \ge \mu(i)$.

If a > 0 then for any $b \in L$, b < a we observe that $\mu_{[b]}$ is a right ideal of $\gamma_{[a]}$ and $x \in \mu_{[b]}$, implies $\mu((x+i)y-xy) > b$.

Hence $\mu((x+i)y-xy) \ge \lor \{b \mid b \in L, b \le a\}$.

Since L is dense, $\lor \{b | b \in L, b < a\} = a$.

Therefore μ ((x+i) y-xy) $\geq a = \mu$ (i) $\land \gamma$ (y).

Hence μ ((x+i) y-xy) $\geq \mu$ (i) $\wedge \gamma$ (y) for all x, y, i $\in \mathbb{R}$.

Thus μ is a L-right ideal of γ .

Part (II): Let us suppose that $\mu_{[a]}$ is left ideal of $\gamma_{[a]}$ for every $a \in L \setminus \{1\}$

We shall prove the last condition which conforms that μ is a L-left ideal of γ .

Let $y \in \mu_{[a]}$ and $x \in \gamma_{[a]}$. Then $\mu(y) > a$ and $\gamma(x) > a$.

If a=0 then clearly $\mu(xy) \ge \gamma(x) \land \mu(y)$.

If a > 0 then for any $b \in L$, b < a we observe that $\mu_{[b]}$ is a left ideal of $\gamma_{[a]}$ and $x \in \mu_{[b]}$ implies $\mu(xy) > b$. Hence $\mu(xy) \ge \vee \{b | b \in L, b < a\}$.

Since L is dense, $\lor \{b | b \in L, b < a\} = a$.

Therefore $\mu(xy) \ge a = \gamma(x) \land \mu(y)$.

Hence $\mu(xy) \ge a = \gamma(x) \land \mu(y)$ for all $x, y \in \mathbb{R}$.

Thus μ to be a L-left ideal of γ .

Theorem (3.14): Let $\gamma \in TL(R)$ and μ be a TL-left ideal of γ .

Then $R\mu$ is a left ideal of $R\gamma$.

Proof: Let $\gamma \in TL(R)$ and μ be a TL-left ideal of γ .

 $R\mu = \{x \in R \mid \mu(x) = 1\}, \text{ similarly } R\gamma = \{x \in R \mid \gamma(x) = 1\}.$

We know that $\mu \leq \gamma$ and $a \in L \Rightarrow \mu_{[a]} \subseteq \gamma_{[a]}$. Therefore $R\mu \subseteq R\gamma$.

Now first we shall prove that $(R\mu,+)$ is a subgroup of (R,+).

(i) Since $\mu(0) = 1, 0 \in R\mu$.

Hence $R\mu$ is a non-empty subset of R.

(ii) Let $x \in R\mu$.

Then $\mu(x) = 1$ and $\mu(-x) \ge \mu(x)$ implies $\mu(-x) = 1$.

Therefore $-x \in R\mu$ for all $x \in R\mu$.

(iii) Let $x, y \in R\mu$.

Then $\mu(x+y) \ge \mu(x) T \mu(y) \Longrightarrow \mu(x+y) \ge 1T1 = 1$.

Therefore $x+y \in R\mu$ for all $x, y \in R\mu$.

Hence $(R\mu,+)$ is a subgroup of (R,+).

(iv)Let $y \in R$ and $x \in R\mu$.

TL-Ideals of TL-Subnear-Rings

Since $\mu(y+x-y) \ge \mu(x)$ and $\mu(x) = 1$, $\mu(y+x-y) = 1$. Therefore $y+x-y \in R\mu$ for all $y \in R$ and $x \in R\mu$. Hence $(R\mu, +)$ is a normal subgroup of (R, +). Similarly $(R\gamma, +)$ is also a normal subgroup of (R, +). Again since $R\mu \subseteq R\gamma$, $(R\mu, +)$ is a normal subgroup of $(R\gamma, +)$. (v) Since μ is a TL-left ideal of γ , $\mu(xy) \ge \gamma(x) T \mu(y)$ for all $x, y \in \mathbb{R}$. Let $x \in R\mu$ and $r \in R\gamma$. Then $\mu(x) = 1$ and $\gamma(r) = 1$. Therefore $\mu(\mathbf{rx}) \ge \gamma(\mathbf{r}) T \mu(\mathbf{x}) = 1$. Hence $rx \in R\mu$ for all $r \in R\gamma$ and $x \in R\mu$. i.e. $R\gamma R\mu \subseteq R\mu$. Hence $R\mu$ is a left ideal of $R\gamma$. Similarly we can obtain the following theorem: **Theorem (3.15):** Let $\gamma \in TL(R)$ and μ be a TL-right ideal of γ . Then $R\mu$ is a right ideal of $R\gamma$. **Theorem (3.16):** Let $\mu \in TLI_1(R)$ and γ be a normal TL-subgroup of (R, +). Then $\mu T \gamma$ is a TL-left ideal of γ . **Proof:** Let $\mu \in TLI_1(R)$ and $\gamma \in TL(R)$. Clearly $\mu T \gamma \leq \gamma$ and $\mu T \gamma$ is a TL-subgroup of (R, +). Again $\mu T\gamma (y+x-y) = \mu(y+x-y) T\gamma(y+x-y) \ge \mu(x) T\gamma(x) = \mu T\gamma(x)$. Therefore $\mu T\gamma(y+x-y) \ge \mu T\gamma(x)$ for all x, $y \in \mathbb{R}$. Next $\mu T\gamma(xy) = \mu(xy)T\gamma(xy) \ge \mu(y)T\gamma(x) T\gamma(y) = \gamma(x) T(\mu T\gamma)(y)$ for all x, $y \in \mathbb{R}$. Hence $\mu T \gamma$ is a TL-left ideal of γ . Similarly we can prove the following theorem: **Theorem (3.17):** Let $\mu \in TLI_r(R)$ and γ be a normal TL-subgroup of (R, +). Then $\mu T\gamma$ is a TL-left ideal of γ **Theorem (3.18):** Let $\xi \in TL(R)$ and μ, γ be two TL-left ideals of ξ . Then $\mu \wedge \gamma$ is a TLleft ideal of ξ . **Proof:** Let $\xi \in TL(R)$ and μ, γ be two TL-left ideals of ξ . Since μ and γ are TL-left ideals of ξ , $\mu \leq \xi$, $\gamma \leq \xi$ and so $\mu \land \gamma \leq \xi$.

Hence $\mu \wedge \gamma$ is a TL-subgroup of (R, +).

Again
$$(\mu \land \gamma)(y+x-y) = \mu(y+x-y)\land \gamma(y+x-y) \ge \mu(x)\land \gamma(x) = (\mu \land \gamma)(x), x \in \mathbb{R}.$$

 $(\mu \land \gamma) (xy) = \mu (xy) \land \gamma (xy) \ge (\xi(x) T \mu(y)) \land (\xi(x) T \gamma (y)).$

$$= \xi(x) T(\mu(y) \land \gamma(y)) = \xi(x) T(\mu \land \gamma)(y)$$
 for all $x, y \in \mathbb{R}$.

Hence
$$\mu \wedge \gamma$$
 is a TL-left ideal of ξ .

Similarly we can prove the following theorem:

Theorem (3.19): Let $\xi \in TL(R)$ and μ, γ be two TL-right ideals of ξ . Then $\mu \wedge \gamma$ is a TL-right ideal of ξ .

4. Homomorphism

The following definitions are well-known:

Definition (4.1): Let R and R' be two near-rings. A function f: $R \rightarrow R'$ is called a homomorphism if for all x, $y \in R$

(i)
$$f(x+y) = f(x) + f(y)$$
,
(ii) $f(xy) = f(x) f(y)$.

.

We know that a one-one homomorphism is an isomorphism.

Definition (4.2) Extension Principle:

Let X and Y be two non-empty sets and f: $X \rightarrow Y$ be a function. Then f induces two functions,

 $f: \mathcal{F}(X) \to \mathcal{F}(Y)$ and $f^{-1}: \mathcal{F}(Y) \to \mathcal{F}(X)$ which are defined as follows:

1) $[f(\mu)](y) = \sup_{x|y=f(x)} \{ \mu(x) \}; \text{ if } y=f(x) ,$

= 0; otherwise.

2) $[f^{-1}(\gamma)](x) = \gamma(f(x); \text{ for all } \gamma \in \mathcal{F}(Y).$

In the following theorem we prove that the homomorphic image of TL-left (resp.right) ideal of R is a TL-left (resp.right) ideal of S:

Theorem (4.3): Let f: $R \rightarrow S$ be a homomorphism of a near-ring R onto a near-ring S and $\mu \in TLI_{t}(R)$ (resp. $\mu \in TLI_{l}(R)$). Then $f(\mu) \in TLI_{t}(S)$)(resp. $\mu \in TLI_{l}(S)$).

Proof: Let f: $R \rightarrow S$ be a homomorphism of a near-ring R onto a near-ring S.

Let $x, y \in S$.

Part (I): Let $\mu \in TLI_r(R)$.

$$\begin{array}{l} (i) \ {\rm Clearly} \ f(\mu)(0') = 1. \\ (ii) \ f(\mu)(-x) = \lor \{ \ \mu(w) | w \in R, \ f(w) = -x \}. \\ \qquad = \lor \{ \ \mu(-w) | -w \in R, \ f(-w) = x \}. \\ \qquad \ge \lor \{ \ \mu(w) | w \in R, \ f(w) = x \}. \\ \qquad = f(\mu)(x) \ {\rm for \ all} \ x \in S. \\ (ii) \ f(\mu)(x-y) = \lor \{ \mu(w) | w \in R, \ f(w) = x - y \} \\ \qquad \ge \lor \{ \mu(u-v) | u, \ v \in R, \ f(u) = x, \ f(v) = y \} \\ \qquad \ge \lor \{ \mu(u)T \ \mu(v) | u, \ v \in R, \ f(u) = x, \ f(v) = y \} \\ \qquad \ge \lor \{ \mu(u) | u \in R, \ f(u) = x \ \} T(\lor \{ \mu(v) | v \in R, \ f(v) = y \} \\ \qquad \ge (\lor \{ \mu(u)) | u \in R, \ f(u) = x \ \} T(\lor \{ \mu(v) | v \in R, \ f(v) = y \} \\ \qquad = f(\mu)(x)T \ f(\mu)(y) \ {\rm for \ all} \ x, \ y \in S. \\ (iii) \ f(\mu) \ (\ y + x - y) = \lor \{ \mu(w) | w \in R, \ f(w) = x \ \}. \\ \qquad \ge \lor \{ \mu(u) \ | u \in R, \ f(u) = x \ \}. \\ Therefore \ f(\mu)(\ y + x - y) \ge \lor \{ \mu(u) | u \in R, \ f(u) = x \ \}. \\ Therefore \ f(\mu)(\ y + x - y) \ge f(\mu)(x) \ {\rm for \ all} \ x, \ y \in S. \\ Hence \ f(\mu)(\ y + x - y) \ge f(\mu)(x) \ {\rm for \ all} \ x, \ y \in S. \\ Hence \ f(\mu)(\ (x + i)y - xy) = \lor \{ \mu(w) | w \in R, \ f(w) = (x + i)y - xy \ \}. \\ \qquad \ge \lor \{ \mu((u + t)v - uv) | u, v, \ t \in R, \ f(u) = x, \ f(v) = y, \ f(t) = i \}. \\ \end{cases}$$

 $\geq \vee \{\mu(t) | t \in \mathbb{R}, f(t) = i\}.$

$$= f(\mu)(i)$$
 for all x, y, $i \in S$.

Hence $f(\mu) \in TLI_r(S)$. \geq

Part (II): Let $\mu \in TLI_1(R)$. Then clearly

(vi) $f(\mu)(xy) \ge f(\mu)(y)$ for all $x, y \in S$.

Hence from (i), (ii), (iii), (iv) and (vi) $f(\mu) \in TLI_1(S)$.

In the following theorem we discuss about the inverse images of TL-right/left ideals of R:

Theorem (4.4): Let $f : R \to S$ be a homomorphism of a near-ring R into a near-ring S and $\gamma \in TLI_r(S)(resp.\gamma \in TLI_l(S))$. Then $f^1(\gamma) \in TLI_r(R)$ (resp. $f^1(\gamma) \in TLI_l(R)$.

Proof: Let f: $R \rightarrow S$ be a homomorphism of a near-ring R onto a near-ring S.

Part (I): Let $\gamma \in TLI_{r}(S)$. (i) $f^{1}(\gamma)(0) = \gamma(f)(0) = \gamma(0') = 1$. (ii) $f^{1}(\gamma)(-x) = \gamma(f)(-x) = \gamma(-f(x)) \ge \gamma(f(x)) = f^{-1}(\gamma)(x)$ for all $x \in R$. (iii) $f^{1}(\gamma)(x+y) \ge (f^{-1}(\gamma)(x))T(f^{-1}(\gamma)(y))$ for all $x, y \in R$. (iv) $f^{1}(\gamma)(y-x+y) = \gamma(f(y+x-y)) \ge \gamma(f(x)) = f^{-1}(\gamma)(x)$ for all $x, y \in R$. (v) $f^{1}(\gamma)((x+i)y-xy) = \gamma(f((x+i)y-xy)) \ge f^{-1}\gamma(i)$ for all $x, y, i \in R$. Hence $f^{1}(\gamma) \in TLI_{r}(R)$.

Part (II) : Let $\gamma \in TLI_1(S)$.

 $(vi)f^{1}(\gamma)(xy) = \gamma(f(xy)) = \gamma(f(x) f(y)) \ge \gamma(f(y)) = f^{1}(\gamma)(y) \text{ for all } x, y \in \mathbb{R}.$

Hence from (i), (ii), (iii), (iv) and (vi) $f^{1}(\gamma) \in TLI_{1}(R)$.

For $\mu \in L^R$ and $\gamma \in TL$ (R) then f (μ) is a TL-left ideal of f (γ) under the following conditions:

Theorem (4.5): Let $f : R \to S$ be a homomorphism of a near-ring R onto a near-ring S. Let $\gamma \in TL(R)$ and μ a TL-left ideal of γ . Then $f(\mu)$ is a TL-left ideal of $f(\gamma)$.

Proof: Let f: $R \rightarrow S$ be a homomorphism of a near-ring R onto a near-ring S.

Since $\mu \leq \gamma$, $f(\mu) \leq f(\gamma)$.

Part (I): Let μ be a TL- right ideal of γ .

Also both $f(\mu)$ and $f(\gamma)$ are TL-subgroups of (R,+).

Let x, $y \in S$. Then

 $f(\mu)(y+x-y) = \lor \{\mu(w) | w \in \mathbb{R}, f(w) = y+x-y\}.$

 $\geq \forall \{ \mu(v+u-v) | u, v \in R, f(u) = x, f(v) = y \}.$

 $= \lor \{ \mu(u) | u \in \mathbb{R}, f(u) = x \}.$

= f (μ)(x) for all x, y \in R.

 $f(\mu)((x+i)y - xy) = \forall \{ \mu(w) | w \in R, f(w) = (x+i)y - xy \}$

$$\geq \ \lor \{ \ \mu((u+t)v \ -uv) | u, v, t \in R, \ f((u+t)v - uv)) = (x+i)y - xy \}$$

 $\geq \vee \{\mu(t)T \ \gamma(v) \ | t, y \in \mathbb{R}, \ f(t) = i, \ f(y) = v\}$

- $= (\lor \{ \mu(t)) | t \in \mathbb{R}, f(t) = i \}) T(\lor \{ \gamma(v) | y \in \mathbb{R}, f(y) = v \}).$
- $= f(\mu)(i) T f(\gamma)(y).$

Thus $f(\mu)((x + i)y - xy) \ge f(\mu)(i) T f(\gamma)(y)$, for all $x, y, i \in R$.

Hence $f(\mu)$ is a TL-right ideal of $f(\gamma)$.

Part (II): Let μ be a TL- left ideal of γ .

 $f(\mu)(xy) = \lor \{ \mu(w) | w \in \mathbb{R}, f(w) = xy \}.$

 $\geq \lor \{ \mu(uv) | u, v \in \mathbb{R}, f(u) = x, f(v) = y \}.$

- $\geq \vee \{ \gamma(u)T \ \mu(v) | u, v \in \mathbb{R}, \ f(u) = x, \ f(v) = y \}.$
- $= (\lor \{ \gamma(u) | u \in R, f(u) = x \}) T(\lor \{ \mu(v) | v \in R, f(v) = y \}).$
- = $f(\gamma)(x) T f(\mu)(y)$ for all $x, y \in \mathbb{R}$.

Hence $f(\mu)$ is a TL-left ideal of $f(\gamma)$.

For $\mu \in L^R$ and $\gamma \in TL$ (R) then f (μ) is a TL-left ideal of f (γ), this we prove in the following theorem:

Theorem (4.6):Let $f: \mathbb{R} \to S$ be a homomorphism of a near-rings and $\gamma \in TL(S)$, μ be TL-right (resp.left) ideal of γ . Then $f^{-1}(\mu)$ is a TL-right(resp.left) ideal of $f^{-1}(\gamma)$.

Proof: Let $f: R \to S$ be a homomorphism of a near-rings.

Clearly $\mu \leq \gamma \Longrightarrow f^{-1}(\mu) \leq f^{1}(\gamma)$.

As proved earlier $f^{-1}(\mu)$ and $f^{1}(\gamma)$ are TL-subgroups of R and $f^{-1}(\mu) \leq f^{1}(\gamma)$.

Part (I): Let μ be a TL- right ideal of γ and x, $y \in R$. Then

(i) $f^{1}(\mu)(0) = \mu(f)(0) = \gamma(0') = 1.$

(ii) $f^{1}(\mu)(-x) = \mu(f)(-x) = \mu(-f(x)) \ge \mu(f(x)) = f^{1}(\mu)(x)$ for all $x \in \mathbb{R}$.

(iii) $f^{-1}(\mu)(x-y) = \mu(f)(x-y) \ge \mu(f(x))T\mu(f(y)) = f^{-1}(\mu)(x)Tf^{-1}(\mu)(y).$

i.e. $f^{1}(\mu)(x-y) \ge f^{1}(\mu)(x) T f^{1}(\mu)(y)$ for all $x, y \in R$.

 $(iv)f^{1}(\mu)(y+x-y) = \mu(f)(y+x-y) = \mu(f(y)+f(x)-f(y)) \ge \mu(f(x)) = f^{1}(\mu)(x).$

i.e. $f^1(\mu)(y+x-y) \ge f^1(\mu)(x)$ for all $x,y \in \mathbb{R}$.

 $(v)f^{1}(\mu)((x+i)y-xy) = \mu(f)((x+i)y-xy).$

 $= \mu((f(x) + (f(i))(f(y) - (f(x)(f(y))))))$ $\geq \mu(f(i))) = f^{-1}(\mu)(i).$

Thus $f^{1}(\mu)((x+i)y-xy) \ge \mu(f(i)) = f^{1}(\mu)(i)$ for all x, y, $i \in \mathbb{R}$.

Hence $f^{-1}(\mu)$ is a right ideal of $f^{-1}(\gamma)$.

Part (II):Let μ be a TL- left ideal of γ . Then

 $(vi)f^{-1}(\mu)(xy) = \mu(f(xy)) = \mu(f(x)f(y)) \ge \gamma(f(x)T\mu(f(y)) = (f^{-1}(\gamma)(x))T(f^{-1}(\mu)(y)).$

i.e. $f^{1}(\mu)(xy) \ge (f^{1}(\gamma)(x)) T(f^{1}(\mu)(y))$ for all $x, y \in R$.

Hence from (i), (ii) (iii) (iv) and (vi) $f^{-1}(\mu)$ is a TL-left ideal of $f^{1}(\gamma)$.

Theorem (4.7): If an L-subset μ^* of R/μ is defined by $\mu^*(x+\mu) = \mu(x)$ for all $x \in R$ then $\mu^* \in TLI(R)$.

Proof: Now let us define a function f: $R/\mu \rightarrow R/R \mu$ by

 $f(x+\mu) = x + R \mu$ for all $x \in R$.

We shall prove that f is an onto isomorphism.

(1)
$$f((x + \mu) + T(y + \mu)) = f((x + y) + \mu) = (x + y) + R \mu = (x + R\mu) + (y + R\mu)$$

= $f(x + \mu) + f(y + \mu)).$

(2) $f((x + \mu)*(y + \mu)) = f(xy + \mu) = xy + R \mu = (x + R \mu)*(y + R \mu).$

$$= f(x + \mu)_* f(y + \mu).$$

(3) Let $f(x + \mu) = f(y + \mu)$ where $x, y \in R$.

Then $f(x + \mu) = f(y + \mu) \Rightarrow x + R \mu = y + R \mu \Rightarrow x - y \in R \mu \Rightarrow \mu(x - y) = \mu(0)$

$$\Rightarrow \mu(x) = \mu(y) \Rightarrow x = y \Rightarrow x + \mu = y + \mu.$$

Hence f is an isomorphism.

(4) We observe that for all $x + R \mu \in R/R \mu$, $x \in R$ there exists $x + \mu \in R/\mu$ such that $f(x + \mu) = x + R \mu$ for all $x \in R$.

Therefore f is an onto isomorphism.

(5) An L-subset μ^* of R/ μ is defined by

$$\mu^{*}(x + \mu) = \mu(x) \text{ for all } x \in \mathbb{R}. \text{ Then}$$
(i) $\mu^{*}(\mu) = \mu^{*}(0 + \mu) = \mu(0) = 1.$
(ii) $\mu^{*}(-x + \mu) = \mu(-x) \ge \mu(x) = \mu^{*}(x + \mu) \text{ for all } x \in \mathbb{R}.$
(iii) $\mu^{*}((x + \mu) +_{T}(y + \mu)) = \mu^{*}((x + y) + \mu) = \mu(x + y).$

$$\ge \mu(x)T \ \mu(y) = \mu^{*}(x + \mu)T \ \mu^{*}(y + \mu) \text{ for all } x, y \in \mathbb{R}.$$
(iv) $\mu^{*}((y + \mu) +_{T}(x + \mu) +_{T}(-y + \mu)) = \mu^{*}((y + x) + \mu) +_{T}(-y + \mu)).$

$$= \mu^{*}((y + x) + \mu) +_{T}(-y + \mu).$$

$$= \mu (y + x - y)$$

$$\geq \mu (x).$$

 $= \mu^*(x+\mu) \text{ for all } x, y \in R.$ (iv) $\mu^*((x+\mu)_*(y+\mu)) = \mu^*(xy+\mu) = \mu(xy) \ge \mu(y) = \mu^*(y+\mu) \text{ for all } x, y \in R.$ (v) $\mu^*[((x+\mu)+_T(a+\mu)))_*(y+\mu)-(x+\mu)_*(y+\mu)]$ $= \mu^*[(x+a)_*(y+\mu) - (x+\mu)_*(y+\mu)].$ $= \mu^*[(x+a)y+\mu)-(xy+\mu)].$ $= \mu^*[((x+a)y-xy)+\mu)].$ $= \mu((x+a)y-xy).$ $\ge \mu(a).$ $= \mu^*(a+\mu) \text{ for all } x, y, a \in R.$

Therefore μ^* is a TL-left as well TL-right ideal of R.

References

- [1] S. Abou-Zaid, On Fuzzy Subnear-rings and Ideals, Fuzzy Sets and Systems 44 (1991), 139-146.
- M. Akgul, Properties of Fuzzy Groups, Journal of Mathematical Analysis and Applications 133(1988), 93-100.
- [3] J.M. Anthoy and H. Sherwood, Fuzzy Groups Redefined, Journal of Mathematical Analysis and Applications 69(1979), 124-130.
- [4] M. Asaad and S. Abou-Zaid, A Contribution to the Theory of Fuzzy Subgroups, Fuzzy Sets and Systems 77(1996), 355-369.
- [5] S.C. Cheng, John N. Mordeson and Yu Yandong, Lecture Notes in Fuzzy Mathematics and Computer Science, Elements of L-Algebra, Centre for Research in Fuzzy Mathematics and Computer Science, Creighton University, Omaha, Nebraska 68178, USA, 1994.
- [6] P.S. Das, Fuzzy Groups and Level Subgroups, Journal of Mathematical Analysis and Applications 84(1981), 264-269.
- [7] V.N. Dixit, S.K. Bhambri and Pratibha Kumar, Level Subgroups and Union of Fuzzy Subgroups, Fuzzy Sets and Systems 37(1990), 359-371.
- [8] T. K. Dutta and B. K. Biswas, Fuzzy Ideals of Near-Ring, Bull. Cal. Math Soc. 89 (1997), 447-456.
- [9] J.A. Goguen, L-FuzzySets, Journal of Mathematical Analysis and Applications18 (1967), 145-174.
- [10] Pilz Gunter, Near-Rings, North-Holland, Amsterdam, 1983.
- [11] W. Liu, Fuzzy Invariant Subgroups and Fuzzy Ideals, Fuzzy Sets and Systems 8(1982), 133-139.
- [12] J.D.P. Meldrum, Near-Rings and their Links with Groups, Pitman, London.
- [13] A. Rosenfeld, Fuzzy Groups, Journal Mathematical Analysis and Applications, 35 (1971), 512-517.
- [14] J.D. Yadav and Y.S. Pawar, TL-ideals of Near-rings, communicated.
- [15] L.A. Zadeh, Fuzzy Sets, Inform. and Control 8(1965), 338-353.