TL-IDEALS OF TL-SUBNEAR-RINGS

J.D. Yadav.

S.G.M.College, Karad, Maharashtra, India

Email: jdy1560@yahoo.co.in

Y.S. Pawar.

Department Of Mathematics, Shivaji University, Kolhapur, Maharashtra, India

Email: y_s_pawar@yahoo.com

Received 20.07.2011 Accepted 08.01.2012

Abstract

The aim of this paper is to introduce and study TL-ideals of TL-subnear-rings. Also we define Tsum, T-difference and T-product of L-subsets of a near-ring R and obtain their properties.

Key words: Fuzzy set, TL-subnear-ring, TL-ideal, Homomorphism, Near-ring

1. Introduction

Near-Ring is a generalized structure of a ring. The theory of fuzzy sets was introduced by Zadeh [15] .The fuzzy set theory has been developed in many directions by the research scholars. Goguen [9] introduced the concept of L-fuzzy sets. Rosenfeld [13] first introduced the fuzzification of the algebraic structures and defined fuzzy subgroups. Anthony and Sherwood [3], Asaad and Abou-zaid [4], Akgul [2], Das [6], Dixit, Bhambri and Kumar [7] contributed the theory of fuzzy subgroups. Fuzzy ideals of rings are first defined by Liu. [11] and the study was continued by many other researchers to extend the concepts.
Abou-Zaid [1] introduced the notion of fuzzy R-subgroups and fuzzy ideals of near-rings. Dutta and Biswas [8] introduced fuzzy and fuzzy cosets of fuzzy ideals of near-rings. Cheng, Mordeson and Yandong [5] have discussed TL-subnear-rings and TL-ideals of a ring.
As in ring theory, it is interesting to fuzzify some substructures of near-ring. Hence our aim in this paper is to study TL-ideals of TL-subnear-rings and to characterize them.

2. Preliminaries

We recall some definitions for the sake of completeness.
Definition (2.1) [10]:By a near-ring we mean a non-empty set R with two binary operations ' + ' and '‘' satisfying the following axioms:
(i) $(\mathrm{R},+)$ is a group,
(ii) ($\mathrm{R}, \cdot)$ is a semi-group,
(iii) $x \cdot(y+z)=x \cdot y+x \cdot z$ for all $x, y, z \in R$.

Precisely speaking, it is a left near-ring because it satisfies the left distributive law. We will use the word "near-ring" instead of "left near-ring". We denote xy instead of $x \cdot y$. Note that $\mathrm{x} 0=0$ and $\mathrm{x}(-\mathrm{y})=-\mathrm{xy}$, but $0 \mathrm{x} \neq 0$ for $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Definition (2.2) [1, 8]: An ideal I of a near-ring R is a subset of R such that
(i) $(\mathrm{I},+)$ is a normal subgroup of $(\mathrm{R},+)$,
(ii) $\mathrm{RI} \subseteq \mathrm{I}$,
(iii) $(r+i) s-r s \in I$ for all $i \in I$ and $r, s \in R$.

Note that if I satisfies (i) and (ii) then it is called a left ideal of R.
If I satisfies (i) and (iii) then it is called a right ideal of R.
Definition (2.3): A binary operation T on a lattice L is called a t-norm if it satisfies the following conditions:
(i) $\mathrm{T}(\mathrm{T}(\mathrm{a}, \mathrm{b}), \mathrm{c})=\mathrm{T}(\mathrm{a}, \mathrm{T}(\mathrm{b}, \mathrm{c}))$,
(ii) $\mathrm{T}(\mathrm{a}, \mathrm{b})=\mathrm{T}(\mathrm{b}, \mathrm{a})$,
(ii) $\mathrm{b} \leq \mathrm{c} \Rightarrow \mathrm{T}(\mathrm{a}, \mathrm{b}) \leq \mathrm{T}(\mathrm{a}, \mathrm{c})$,
(iv) $\mathrm{T}(\mathrm{a}, 1)=\mathrm{a}$,
for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{L}$.
Definition (2.4): A fuzzy set μ in a near-ring R is a function $\mu: \mathrm{R} \rightarrow[0,1]$.
Definition (2.5): Let μ be a fuzzy set in a near-ring R and $\mathrm{t} \in[0,1]$. Then the crisp set μ_{t} $=\{x \in R \mid \mu(x) \geq t\}$ is called a t-level subset or t-cut of μ.

3. TL-ideals of TL-subnear-ring

Let R be a near-ring and L be a complete lattice.
Definition (3.1)[14]: An L-subset μ of a near-ring R is called a TL-subgroup of R if it satisfies the following conditions:
(i) $\mu(0)=1$,
(ii) $\mu(-x) \geq \mu(x)$,
(iii) $\mu(\mathrm{x}+\mathrm{y}) \geq \mu(\mathrm{x}) \mathrm{T} \mu(\mathrm{y})$.
for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Definition (3.2)[14]: An L-subset μ of a near-ring R is called a TL- subnear-ring of R if it satisfies the following conditions:
(i) $\mu(0)=1$,
(ii) $\mu(-x) \geq \mu(x)$,
(iii) $\mu(\mathrm{x}+\mathrm{y}) \geq \mu(\mathrm{x}) \mathrm{T} \mu(\mathrm{y})$,
(iv) $\mu(\mathrm{x} y) \geq \mu(\mathrm{x}) \mathrm{T} \mu(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.

Remarks (3.3): (i) When $T=\wedge$, a TL-subnear-ring is called L-subnear-ring.
(ii)The set of all TL- subnear-rings of R and set of all L- subnear-rings of R are denoted by $\mathrm{TL}(\mathrm{R})$ and $\mathrm{L}(\mathrm{R})$ respectively.
(iii) If $\mathrm{L}=[0,1]$, TL- subnear-ring and L - subnear-ring of R are known as T -fuzzy subnear-ring and fuzzy subnear-ring of R respectively.
Definition (3.4)[14]: An L-subset μ of a near-ring R is called a TL-ideal of R if
(i) $\mu(0)=1$,
(ii) $\mu(-x) \geq \mu(x)$,
(iii) $\mu(x+y) \geq \mu(x) T \mu(y)$,
(iv) $\mu(y+x-y) \geq \mu(x)$,
(v) $\mu(x y) \geq \mu(y)$,
(vi) $\mu((x+i) y-x y) \geq \mu(i)$ for
for all $x, y, i \in R$.
Remarks (3.5) : (i) If μ satisfies (i), (ii), (iii), (iv) and (v) then it is TL-left ideal of R and if μ satisfies (i), (ii), (iii), (iv) and (vi) then it is TL-right ideal of R.
(ii) When $\mathrm{T}=\wedge$, a TL-left ideal and TL-right ideal are known as L-left ideal and L-right ideal respectively.
(iii) The set of all TL- left ideals and TL-right ideals of R are denoted by $\mathrm{TLI}_{1}(\mathrm{R})$ and $\mathrm{TLI}_{\mathrm{r}}(\mathrm{R})$ respectively.
(iv) When $T=\wedge$, set of all L- left ideals and L-right ideals of R are denoted by $\mathrm{LI}_{1}(\mathrm{R})$ and $\mathrm{LI}_{\mathrm{r}}(\mathrm{R})$ respectively.
(v) When $L=[0,1]$ TL-left ideals and TL-right ideals are known as T-fuzzy left ideals and T-fuzzy right ideals of R respectively and when $\mathrm{T}=\wedge$, they are known as fuzzy left ideals and fuzzy right ideals of R respectively.
Now we define TL-ideals of TL-subnear-rings:
Definition (3.6): A function $\mu: \mathrm{R} \rightarrow \mathrm{L}$ is called an L -subset of R .
The set of all L-subsets of R is called the L-power set of R and is denoted by L^{R}.
Definition (3.7): Let $\mu \in \mathrm{L}^{\mathrm{R}}, \gamma \in \mathrm{TL}(\mathrm{R})$ and $\mu \leq \gamma$. Then
(1) μ is a TL-left ideal of γ if
(i) μ is a normal TL-subgroup of $(R,+)$,
(ii) $\mu(x y) \geq \gamma(x) T \mu(y)$ for all $x, y \in R$.
(2) μ is a TL-right ideal of γ if
(i) μ is a normal TL-subgroup of $(R,+)$,
(ii) $\mu((x+i) y-x y) \geq \mu(i) T \gamma(y)$ for all $x, y, i \in R$.
(3) μ is said to be TL-two sided or TL-ideal of γ if
(i) μ is a normal TL-subgroup of $(\mathrm{R},+)$,
(ii) μ is both TL-left and TL-right ideal of γ.

Remark (3.8): When $T=\wedge$ these ideals will be called as L-left, L-right and
L-two sided ideals of γ respectively.
Theorem (3.9): An L-subset $\mu \in \mathrm{L}^{\mathrm{R}}$ is a TL-right (resp.TL-left) ideal of R if and only if μ is a TL-right (resp.TL-left) ideal of the TL-subnear-ring 1_{R}.
Proof: Part (I): Let $\mu \in \mathrm{L}^{\mathrm{R}}$ be a TL-right ideal of R.
Then $\mu((x+i) y-x y) \geq \mu(i) \leq$ for all $x, y, i \in R$.
Now $\mu(\mathrm{i}) \mathrm{T} 1_{\mathrm{R}}(\mathrm{y}) \leq \mu(\mathrm{i}) \wedge 1_{\mathrm{R}}(\mathrm{y})=\mu(\mathrm{i})$.
$\Rightarrow \mu($ i $) T 1_{R}(y) \leq \mu(i) \leq \mu((x+i) y-x y)$.
i.e. $\mu((x+i) y-x y) \geq \mu(i) T 1_{R}(y)$ for all $x, y, i \in R$.

Hence μ is a TL-right ideal of the TL-subnear-ring 1_{R}.
Conversely let μ be a TL-right ideal of the TL-subnear-ring 1_{R}.
Therefore $\mu((x+i) y-x y) \geq \mu(i) T 1_{R}(y)$ for all $x, y, i \in R$.

$$
\begin{aligned}
& \Rightarrow \mu((x+i) y-x y) \geq \mu(i) \text { T } 1_{R}(y)=\mu(i) \\
& \Rightarrow \mu((x+i) y-x y) \geq \mu(i) \text { for all } x, y, i \in R
\end{aligned}
$$

Hence μ is a TL-right ideal of R .
Part (II): Let $\mu \in \mathrm{L}^{\mathrm{R}}$ be a TL-left ideal of R .
Then μ is a normal TL-subgroup of $(\mathrm{R},+)$ and $\mu(x y) \geq \mu(\mathrm{y})$.
Therefore $1_{R}(x) T \mu(y) \leq 1_{R}(x) \wedge \mu(y)=\mu(y)$ for all $x, y \in R$.

$$
\Rightarrow 1_{\mathrm{R}}(\mathrm{x}) \mathrm{T} \mu(\mathrm{y}) \leq \mu(\mathrm{y}) \leq \mu(\mathrm{xy})
$$

Hence μ is a TL-left ideal of the TL-subnear-ring 1_{R}.
Conversely let μ be a TL-left ideal of the TL-subnear-ring 1_{R}.

Therefore $\mu(x y) \geq 1_{R}(x) T \mu(y)=\mu(y)$.
Hence μ is a TL-left ideal of R .
Theorem (3.10): Let $\mu \in L^{R}$ and $\gamma \in \mathrm{L}(\mathrm{R})$.If μ is L - right (resp.L-left) ideal of γ then for every $\mathrm{a} \in \mathrm{L}, \mu_{\mathrm{a}}$ is a right (resp. left) ideal of γ_{a}.
Proof: Part (I): Let μ be L-right ideal of γ.
Then $\mu((\mathrm{x}+\mathrm{i}) \mathrm{y}-\mathrm{xy}) \geq \mu$ (i) $\mathrm{T} \gamma$ (y).
Let $\mathrm{x} \in \mu_{\mathrm{a}}$ and $\mathrm{y} \in \gamma_{\mathrm{a}}$.
Then $x \in \mu_{\mathrm{a}}$ and $\mathrm{y} \in \gamma_{\mathrm{a}} . \Rightarrow \mu(\mathrm{x}), \gamma(\mathrm{y}) \geq \mathrm{a}$.
Therefore $\mu(y+x-y)=\mu(x) \geq a$ for all $x \in \mu_{a}$ and $y \in \gamma_{a}$.

$$
\Rightarrow y+x-y \in \mu_{a} \text { for all } x \in \mu_{a} \text { and } y \in \gamma_{a} .
$$

Hence μ_{a} is a normal L-subgroup of ($\gamma_{a},+$).
Now let $i \in \mu_{a}$ and $x, y \in \gamma_{a}$
Then $\mu(\mathrm{i}) \geq \mathrm{a}$ and $\gamma(\mathrm{x}) \geq \mathrm{a}, \gamma(\mathrm{y}) \geq \mathrm{a}$.
since $\mu((x+i) y-x y) \geq \mu(i) \wedge \gamma(y) \geq a$.
Therefore $(\mathrm{x}+\mathrm{i}) \mathrm{y}-\mathrm{xy} \in \mu_{\mathrm{a}}$ for all $\mathrm{i} \in \mu_{\mathrm{a}}$ and $\mathrm{x}, \mathrm{y} \in \gamma_{\mathrm{a}}$.
Hence μ_{a} is a right ideal of γ_{a}.
Part (II): Let μ be L- left ideal of γ.
Let $\mathrm{x} \in \mu_{\mathrm{a}}$ and $\mathrm{y} \in \gamma_{\mathrm{a}}$.
Then $\mathrm{x} \in \mu_{\mathrm{a}}$ and $\mathrm{y} \in \gamma_{\mathrm{a}} \Rightarrow \mu(\mathrm{x}), \gamma(\mathrm{y}) \geq \mathrm{a}$.
Then $\mu(y+x-y) \geq \mu(x) \geq$ a for all $x \in \mu_{a}$ and $y \in \gamma_{a}$.
Therefore $\mathrm{y}+\mathrm{x}-\mathrm{y} \in \mu_{\mathrm{a}}$ for all $\mathrm{x} \in \mu_{\mathrm{a}}$ and $\mathrm{y} \in \gamma_{\mathrm{a}}$.
Hence $\left(\mu_{\mathrm{a}},+\right)$ is a normal L-subgroup of $\left(\gamma_{\mathrm{a}},+\right)$.
Now let $y \in \mu_{\mathrm{a}}$ and $\mathrm{x} \in \gamma_{\mathrm{a}}$
Since $\mu(x y) \geq \gamma(x) \wedge \mu(y)$.
Therefore $\mu(x y) \geq \gamma(x) \wedge \mu(y) \geq a$.
Thus $x y \in \mu_{a}$ for all $y \in \mu_{a}$ and $x \in \gamma_{a}$.
Hence μ_{a} is a left ideal of γ_{a}.
Remark (3.11): The converse of the theorem is true only when $\mu \in L^{R}$ is a normal L subgroup of ($\mathrm{R},+$).
Theorem (3.12): Let $\mu \in \mathrm{L}^{\mathrm{R}}, \gamma \in \mathrm{L}(\mathrm{R})$ and L be a chain. Then a necessary condition for μ to
be a L-right (resp.L-left) ideal of γ is that for every $\mathrm{a} \in \mathrm{L} \backslash\{1\}, \mu_{[\mathrm{a}]}$ is a right (resp. left) ideal of $\gamma_{[\mathrm{a}]}$.

Proof: Part (I): Let μ be a L-right ideal of γ.Then
(i) $\mu(0)=1$ implies that $0 \in \mu_{[a]}$ for every $\mathrm{a} \in \mathrm{L} \backslash\{1\}$.
(ii) $\mu(-x) \geq \mu(x)$ for $x \in \mu_{[a]}$ implies that $-\mathrm{x} \in \mu_{[\mathrm{a}]}$.
(iii) Let $x, y \in \mu_{[a]}$. Then $\mu(x)>a, \mu(y)>a$.

But L is a chain, therefore either $\mu(x) \geq \mu(y)$ or $\mu(y) \geq \mu(x)$.
Assume that $\mu(y) \geq \mu(x)$.
As $\mu(x+y) \geq \mu(x) \wedge \mu(y)=\mu(x)>a$. Therefore $x+y \in \mu_{[a]}$ for all $i \in x, y \in \mu_{[a]}$.
Hence $\mu_{[a]}$ is a L-subgroup of R.
(iv) If $\mu_{[a]}$ is not normal then for some $a \in L \backslash\{1\}$, there exists $y \in R$ and $x \in \mu_{[a]}$ such that $y+x-y \notin \mu_{[a]}$.Thus $\mu(x)>a$ and $\mu(y+x-y) \leq a$.
Hence $\mu(y+x-y)<\mu(x)$ and hence μ is not normal which is a contradiction.
Thus $\mu_{[\mathrm{a}]}$ is a normal subgroup of R for all $\mathrm{a} \in \mathrm{L} \backslash\{1\}$.
(v) Again if $\mu_{[a]}$ is not a right ideal of $\gamma_{[a]}$ then for some $a \in L \backslash\{1\}$, there exists $x, y \in R$ and $i \in \mu_{[a]}$ such that $(x+i) y-x y \notin \mu_{[a]}$
Thus $\mu(i)>$ a and $\mu((x+i) y-x y) \leq a$.
This implies that μ is not L-right ideal.
Thus we get a contradiction.
Hence $\mu((x+i) y-x y)>a$ for all $i \in \mu_{[a]}$ and $x, y \in \gamma_{[a]}$.
Hence $\mu_{[a]}$ is a right ideal of $\gamma_{[a]}$.
Part (II): Let μ be a L-left ideal of γ.
Then as in part (I), $\left(\mu_{[a]},+\right)$ is a normal L-subgroup of $(\mathrm{R},+)$.
Again if $\mu_{[a]}$ is not a left ideal of $\gamma_{[a]}$ then for some $\mathrm{a} \in \mathrm{L} \backslash\{1\}$, there exists $\mathrm{y} \in \mu_{[\mathrm{a}]}$ and $x \in \gamma_{[a]}$ such that $x y \notin \mu_{[a]}$.
Then $\mu(y)>$ a and $\mu(x y) \leq a$.Thus $\mu(x y)<\mu(y)$
Therefore $\mathrm{xy} \notin \mu_{[\mathrm{a}]}$ for $\mathrm{y} \in \mu_{[\mathrm{a}]}, \mathrm{x} \in \gamma_{[\mathrm{a}]}$, which is a contradiction.
Hence $\mu_{[a]}$ is a right ideal of $\gamma_{[a]}$.
Theorem (3.13): Let $\mu \in \mathrm{L}^{\mathrm{R}}$ and $\gamma \in \mathrm{L}(\mathrm{R})$ and L be dense. Then a sufficient condition for μ to be a L-right (resp.L-left) ideal of γ is that for every $\mathrm{a} \in \mathrm{L} \backslash\{1\}, \mu_{[\mathrm{a}]}$ is a right (resp. left) ideal of $\gamma_{[a]}$.
Proof: Part (I): Let us suppose that for every $\mathrm{a} \in \mathrm{L} \backslash\{1\}, \mu_{[\mathrm{a}]}$ is a right ideal of $\gamma_{[\mathrm{a}]}$.
(i) Clearly $\mu(0)=1$.
(ii) Take $\mathrm{a}<\mu(\mathrm{x})$. Then $\mathrm{x} \in \mu_{[a]}$ implies $-\mathrm{x} \in \mu_{[\mathrm{a}]}$.
$\Rightarrow \mu(-\mathrm{x})>\mathrm{a} \Rightarrow \mu(-\mathrm{x}) \geq 1$ and $\mu(\mathrm{x})>\mathrm{a}$.
$\Rightarrow \mu(-x) \geq \mu(x)$ for all $x \in \mu_{[a]}$.
(iii) Now suppose $x, y \in \mu_{[a]}$

Let $\mu(\mathrm{x}) \wedge \mu(\mathrm{y})>\mathrm{a}$.
Therefore $\mu(x)>\mu(x) \wedge \mu(y)$.

$$
\Rightarrow \mu(\mathrm{x})>\mathrm{a} \Rightarrow \mathrm{x} \in \mu_{[\mathrm{a}]} \text {.Similarly } \mathrm{y} \in \mu_{[\mathrm{a}]} .
$$

Hence $x+y \in \mu_{[a]}$ and so $\mu(x+y)>a$.
Let $\mathrm{a}=\mu(\mathrm{x}) \wedge \mu(\mathrm{y})$.
If $\mathrm{a}=0$ then $\mu(\mathrm{x}+\mathrm{y}) \geq 0=\mu(\mathrm{x}) \wedge \mu(\mathrm{y})$.
If $a>0$ then for any $b \in L, b<a$ we observe that $\mu_{[b]}$ is a right ideal of R
and $x, y \in \mu_{[b]}$, implies that $\mu(x+y) \in \mu_{[b]}$.
i.e. $\mu(x+y)>b \Rightarrow \mu(x+y) \geq \vee\{b \mid b \in L, b<a\}$.

Since L is dense, $\vee\{b \mid b \in L, b<a\}=a$.
Therefore $\mu(x+y) \geq a=\mu(x) \wedge \mu(y)$ for all $x, y \in \mu_{[a]}$.
(iv) Now let $\mathrm{y} \in \gamma_{[\mathrm{a}]}$ and $\mathrm{x} \in \mu_{[\text {[a] }}$ and let $\mathrm{a}>0$.

Then for any $b \in L, b<a$ we observe that $\left(\mu_{[b]},+\right)$ is a normal subgroup of $(R,+), x \in \mu_{[b]}$, implies $\mu(\mathrm{y}+\mathrm{x}-\mathrm{y})>\mathrm{b}$.

Thus $\mu(y+x-y) \geq v\{b \mid b \in L, b<a\}$.
Since L is dense, $V\{b \mid b \in L, b<a\}=a$.
Therefore $\mu(y+x-y) \geq \mu(x)$ for all $i \in \mu_{[a]}, y \in \gamma_{[a]}$.
(v) Finally, let $i \in \mu_{[a]}$ and $x, y \in \gamma_{[a]}$.

If $a=0$ then clearly $\mu((x+i) y-x y) \geq \mu$ (i).
If $a>0$ then for any $b \in L, b<a$ we observe that $\mu_{[b]}$ is a right ideal of $\gamma_{[a]}$ and $x \in \mu_{[b] \text {, }}$ implies $\mu((x+i) y-x y)>b$.

Hence $\mu((x+i) y-x y) \geq \vee\{b \mid b \in L, b<a\}$.
Since L is dense, $\vee\{b \mid b \in L, b<a\}=a$.

Therefore $\mu((x+i) y-x y) \geq a=\mu(i) \wedge \gamma(y)$.
Hence $\mu((x+i) y-x y) \geq \mu(i) \wedge \gamma(y)$ for all $x, y, i \in R$.
Thus μ is a L-right ideal of γ.
Part (II): Let us suppose that $\mu_{[a]}$ is left ideal of $\gamma_{[a]}$ for every $\mathrm{a} \in \mathrm{L} \backslash\{1\}$
We shall prove the last condition which conforms that μ is a L-left ideal of γ.
Let $\mathrm{y} \in \mu_{[\mathrm{a}]}$ and $\mathrm{x} \in \gamma_{[\mathrm{a}]}$. Then $\mu(\mathrm{y})>\mathrm{a}$ and $\gamma(\mathrm{x})>\mathrm{a}$.
If $\mathrm{a}=0$ then clearly $\mu(\mathrm{xy}) \geq \gamma(\mathrm{x}) \wedge \mu(\mathrm{y})$.
If $a>0$ then for any $b \in L, b<a$ we observe that $\mu_{[b]}$ is a left ideal of $\gamma_{[a]}$ and $x \in \mu_{[b]}$ implies $\mu(x y)>b$. Hence $\mu(x y) \geq \vee\{b \mid b \in L, b<a\}$.

Since L is dense, $\vee\{b \mid b \in L, b<a\}=a$.
Therefore $\mu(x y) \geq a=\gamma(x) \wedge \mu(y)$.
Hence $\mu(x y) \geq a=\gamma(x) \wedge \mu(y)$ for all $x, y \in R$.
Thus μ to be a L-left ideal of γ.
Theorem (3.14): Let $\gamma \in \mathrm{TL}(\mathrm{R})$ and μ be a TL-left ideal of γ.
Then $\mathrm{R} \mu$ is a left ideal of $\mathrm{R} \gamma$.
Proof: Let $\gamma \in \mathrm{TL}(\mathrm{R})$ and μ be a TL-left ideal of γ.
$R \mu=\{x \in R \mid \mu(x)=1\}$, similarly $R \gamma=\{x \in R \mid \gamma(x)=1\}$.
We know that $\mu \leq \gamma$ and $\mathrm{a} \in \mathrm{L} \Rightarrow \mu_{[\mathrm{ab}} \subseteq \gamma_{[\mathrm{a}]}$. Therefore $\mathrm{R} \mu \subseteq \mathrm{R} \gamma$.
Now first we shall prove that $(\mathrm{R} \mu,+)$ is a subgroup of $(\mathrm{R},+)$.
(i) Since $\mu(0)=1,0 \in R \mu$.

Hence $R \mu$ is a non-empty subset of R.
(ii) Let $\mathrm{x} \in \mathrm{R} \mu$.

Then $\mu(x)=1$ and $\mu(-x) \geq \mu(x)$ implies $\mu(-x)=1$.
Therefore $-x \in R \mu$ for all $x \in R \mu$.
(iii) Let $x, y \in R \mu$.

Then $\mu(x+y) \geq \mu(x) T \mu(y) \Rightarrow \mu(x+y) \geq 1 T 1=1$.
Therefore $x+y \in R \mu$ for all $x, y \in R \mu$.
Hence $(R \mu,+)$ is a subgroup of $(R,+)$.
(iv)Let $y \in R$ and $x \in R \mu$.

Since $\mu(y+x-y) \geq \mu(x)$ and $\mu(x)=1, \mu(y+x-y)=1$.
Therefore $y+x-y \in R \mu$ for all $y \in R$ and $x \in R \mu$.
Hence $(R \mu,+)$ is a normal subgroup of $(R,+)$.
Similarly $(\mathrm{R} \gamma,+)$ is also a normal subgroup of $(\mathrm{R},+)$.
Again since $\mathrm{R} \mu \subseteq \mathrm{R} \gamma,(\mathrm{R} \mu,+)$ is a normal subgroup of $(\mathrm{R} \gamma,+)$.
(v) Since μ is a TL-left ideal of $\gamma, \mu(x y) \geq \gamma(x) T \mu(y)$ for all $x, y \in R$.

Let $x \in R \mu$ and $r \in R \gamma$.
Then $\mu(x)=1$ and $\gamma(r)=1$.
Therefore $\mu(\mathrm{rx}) \geq \gamma(\mathrm{r}) \mathrm{T} \mu(\mathrm{x})=1$.
Hence $r x \in R \mu$ for all $r \in R \gamma$ and $x \in R \mu$.
i.e. $\mathrm{R} \gamma \mathrm{R} \mu \subseteq \mathrm{R} \mu$.

Hence $\mathrm{R} \mu$ is a left ideal of $\mathrm{R} \gamma$.
Similarly we can obtain the following theorem:
Theorem (3.15): Let $\gamma \in \mathrm{TL}(\mathrm{R})$ and μ be a TL-right ideal of γ.
Then $\mathrm{R} \mu$ is a right ideal of $\mathrm{R} \gamma$.
Theorem (3.16): Let $\mu \in \mathrm{TLI}_{1}(\mathrm{R})$ and γ be a normal TL-subgroup of ($\mathrm{R},+$). Then $\mu \mathrm{T} \gamma$ is a TL-left ideal of γ.

Proof: Let $\mu \in \mathrm{TLI}_{1}(\mathrm{R})$ and $\gamma \in \mathrm{TL}(\mathrm{R})$.
Clearly $\mu \mathrm{T} \gamma \leq \gamma$ and $\mu \mathrm{T} \gamma$ is a TL-subgroup of $(\mathrm{R},+)$.
Again $\mu \mathrm{T} \gamma(\mathrm{y}+\mathrm{x}-\mathrm{y})=\mu(\mathrm{y}+\mathrm{x}-\mathrm{y}) \mathrm{T} \gamma(\mathrm{y}+\mathrm{x}-\mathrm{y}) \geq \mu(\mathrm{x}) \mathrm{T} \gamma(\mathrm{x})=\mu \mathrm{T} \gamma(\mathrm{x})$.
Therefore $\mu \mathrm{T} \gamma(\mathrm{y}+\mathrm{x}-\mathrm{y}) \geq \mu \mathrm{T} \gamma(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
$\operatorname{Next} \mu \mathrm{T} \gamma(\mathrm{xy})=\mu(\mathrm{xy}) \mathrm{T} \gamma(\mathrm{xy}) \geq \mu(\mathrm{y}) \mathrm{T} \gamma(\mathrm{x}) \mathrm{T} \gamma(\mathrm{y})=\gamma(\mathrm{x}) \mathrm{T}(\mu \mathrm{T} \gamma)(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Hence $\mu \mathrm{T} \gamma$ is a TL-left ideal of γ.
Similarly we can prove the following theorem:
Theorem (3.17): Let $\mu \in \operatorname{TLI}_{r}(\mathrm{R})$ and γ be a normal TL-subgroup of $(\mathrm{R},+)$. Then $\mu \mathrm{T} \gamma$ is a TL-left ideal of γ

Theorem (3.18): Let $\xi \in \mathrm{TL}(\mathrm{R})$ and μ, γ be two TL-left ideals of ξ. Then $\mu \wedge \gamma$ is a TLleft ideal of ξ.

Proof: Let $\xi \in \mathrm{TL}(\mathrm{R})$ and μ, γ be two TL-left ideals of ξ.
Since μ and γ are TL-left ideals of $\xi, \mu \leq \xi, \gamma \leq \xi$ and so $\mu \wedge \gamma \leq \xi$.

Hence $\mu \wedge \gamma$ is a TL-subgroup of ($\mathrm{R},+$).
Again $(\mu \wedge \gamma)(\mathrm{y}+\mathrm{x}-\mathrm{y})=\mu(\mathrm{y}+\mathrm{x}-\mathrm{y}) \wedge \gamma(\mathrm{y}+\mathrm{x}-\mathrm{y}) \geq \mu(\mathrm{x}) \wedge \gamma(\mathrm{x})=(\mu \wedge \gamma)(\mathrm{x}), \mathrm{x} \in \mathrm{R}$.
$(\mu \wedge \gamma)(\mathrm{xy})=\mu(\mathrm{xy}) \wedge \gamma(\mathrm{xy}) \geq(\xi(\mathrm{x}) \mathrm{T} \mu(\mathrm{y})) \wedge(\xi(\mathrm{x}) \mathrm{T} \gamma(\mathrm{y}))$.

$$
=\xi(\mathrm{x}) \mathrm{T}(\mu(\mathrm{y}) \wedge \gamma(\mathrm{y}))=\xi(\mathrm{x}) \mathrm{T}(\mu \wedge \gamma)(\mathrm{y}) \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

Hence $\mu \wedge \gamma$ is a TL-left ideal of ξ.
Similarly we can prove the following theorem:
Theorem (3.19): Let $\xi \in \operatorname{TL}(\mathrm{R})$ and μ, γ be two TL-right ideals of ξ.Then $\mu \wedge \gamma$ is a TLright ideal of ξ.

4. Homomorphism

The following definitions are well-known:
Definition (4.1): Let R and R^{\prime} be two near-rings. A function $f: R \rightarrow R^{\prime}$ is called a homomorphism if for all $x, y \in R$
(i) $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$,
(ii) $f(x y)=f(x) f(y)$.

We know that a one-one homomorphism is an isomorphism.

Definition (4.2) Extension Principle:

Let X and Y be two non-empty sets and $f: X \rightarrow Y$ be a function. Then f induces two functions,
$\mathrm{f}: \mathcal{F}(\mathrm{X}) \rightarrow \mathcal{F}(\mathrm{Y})$ and $\mathrm{f}^{-1}: \mathcal{F}(\mathrm{Y}) \rightarrow \mathcal{F}(\mathrm{X})$ which are defined as follows:

1) $[\mathrm{f}(\mu)](\mathrm{y})=\sup _{\mathrm{x} \mid \mathrm{y}=\mathrm{f}(\mathrm{x})}\{\mu(\mathrm{x})\}$; if $\mathrm{y}=\mathrm{f}(\mathrm{x})$,

$$
=0 \text {; otherwise. }
$$

2) $\left[\mathrm{f}^{-1}(\gamma)\right](\mathrm{x})=\gamma(\mathrm{f}(\mathrm{x})$; for all $\gamma \in \mathcal{F}(\mathrm{Y})$.

In the following theorem we prove that the homomorphic image of TL-left (resp.right) ideal of R is a TL-left (resp.right) ideal of S :

Theorem (4.3): Let $f: R \rightarrow S$ be a homomorphism of a near-ring R onto a near-ring S and $\mu \in \operatorname{TLI}_{\mathrm{r}}(\mathrm{R})\left(\right.$ resp.$\left.\mu \in \operatorname{TLI}_{1}(\mathrm{R})\right)$. Then $\left.\mathrm{f}(\mu) \in \operatorname{TLI}_{\mathrm{r}}(\mathrm{S})\right)\left(\right.$ resp.$\left.\mu \in \operatorname{TLI}_{1}(\mathrm{~S})\right)$.

Proof: Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ be a homomorphism of a near-ring R onto a near-ring S .
Let $\mathrm{x}, \mathrm{y} \in \mathrm{S}$.
Part (I): Let $\mu \in \operatorname{TLI}_{\mathrm{r}}(\mathrm{R})$.
(i) Clearly $\mathrm{f}(\mu)\left(0^{\prime}\right)=1$.
(ii) $f(\mu)(-x)=\vee\{\mu(w) \mid w \in R, f(w)=-x\}$.

$$
\begin{aligned}
& =v\{\mu(-w) \mid-w \in R, f(-w)=x\} . \\
& \geq \vee\{\mu(w) \mid w \in R, f(w)=x\} \\
& =f(\mu)(x) \text { for all } x \in S
\end{aligned}
$$

(ii) $f(\mu)(x-y)=\vee\{\mu(w) \mid w \in R, f(w)=x-y\}$

$$
\begin{aligned}
& \geq \vee\{\mu(u-v) \mid u, v \in R, f(u)=x, f(v)=y\} \\
& \geq \vee\{\mu(u) T \mu(v) \mid u, v \in R, f(u)=x, f(v)=y\} \\
& \geq(V\{\mu(u)) \mid u \in R, f(u)=x\}) T(\vee\{\mu(v) \mid v \in R, f(v)=y\} \\
& =f(\mu)(x) T f(\mu)(y) \text { for all } x, y \in S .
\end{aligned}
$$

(iii) $f(\mu)(y+x-y)=\vee\{\mu(w) \mid w \in R, f(w)=y+x-y\}$

$$
\begin{aligned}
& =\vee\{\mu(v+u-v) \mid u, v \in R, f(u)=x, f(v)=y\} . \\
& \geq \vee\{\mu(u) \mid u \in R, f(u)=x\} .
\end{aligned}
$$

Therefore $f(\mu)(y+x-y) \geq \vee\{\mu(u) \mid u \in R, f(u)=x\}$.
i.e. $f(\mu)(y+x-y) \geq f(\mu)(x)$ for all $x, y \in S$.

Hence $f(\mu)(y+x-y) \geq f(\mu)(x)$ for all $x, y \in S$.
(v) $f(\mu)((x+i) y-x y)=v\{\mu(w) \mid w \in R, f(w)=(x+i) y-x y\}$.

$$
\begin{aligned}
& \geq V\{\mu((u+t) v-u v) \mid u, v, t \in R, f(u)=x, f(v)=y, f(t)=i\} . \\
& \geq V\{\mu(t) \mid t \in R, f(t)=i\} . \\
& =f(\mu)(i) \text { for all } x, y, i \in S .
\end{aligned}
$$

Hence $\mathrm{f}(\mu) \in \operatorname{TLI}_{\mathrm{r}}(\mathrm{S})$.
Part (II): Let $\mu \in \operatorname{TLI}_{1}(\mathrm{R})$. Then clearly
(vi) $\mathrm{f}(\mu)(\mathrm{xy}) \geq \mathrm{f}(\mu)(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{S}$.

Hence from (i), (ii), (iii), (iv) and (vi) $f(\mu) \in \operatorname{TLI}_{1}(S)$.
In the following theorem we discuss about the inverse images of TL-right/left ideals of R:
Theorem (4.4): Let $f: R \rightarrow S$ be a homomorphism of a near-ring R into a near-ring S and $\gamma \in \operatorname{TLI}_{\mathrm{r}}(\mathrm{S})\left(\right.$ resp. $\left.\gamma \in \mathrm{TLI}_{1}(\mathrm{~S})\right)$. $\operatorname{Then~}^{1}(\gamma) \in \operatorname{TLI}_{\mathrm{r}}(\mathrm{R})\left(\right.$ resp.f ${ }^{1}(\gamma) \in \operatorname{TLI}_{1}(\mathrm{R})$.

Proof: Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ be a homomorphism of a near-ring R onto a near-ring S .
Part (I): Let $\gamma \in \operatorname{TLI}_{\mathrm{r}}(\mathrm{S})$.
(i) $\mathrm{f}^{1}(\gamma)(0)=\gamma(\mathrm{f})(0)=\gamma\left(0^{\prime}\right)=1$.
(ii) $\mathrm{f}^{-1}(\gamma)(-\mathrm{x})=\gamma(\mathrm{f})(-\mathrm{x})=\gamma(-\mathrm{f}(\mathrm{x})) \geq \gamma(\mathrm{f}(\mathrm{x}))=\mathrm{f}^{-1}(\gamma)(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{R}$.
(iii) $\mathrm{f}^{1}(\gamma)(\mathrm{x}+\mathrm{y}) \geq\left(\mathrm{f}^{-1}(\gamma)(\mathrm{x})\right) \mathrm{T}\left(\mathrm{f}^{-1}(\gamma)(\mathrm{y})\right)$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
(iv) $f^{-1}(\gamma)(y-x+y)=\gamma(f(y+x-y)) \geq \gamma(f(x))=f^{-1}(\gamma)(x)$ for all $x, y \in R$.
(v) $f^{-1}(\gamma)((x+i) y-x y)=\gamma(f((x+i) y-x y)) \geq f^{-1} \gamma(i)$ for all $x, y, i \in R$.

Hence $\mathrm{f}^{1}(\gamma) \in \operatorname{TLI}_{\mathrm{r}}(\mathrm{R})$.
Part (II) : Let $\gamma \in \mathrm{TLI}_{1}$ (S).
(vi) $f^{1}(\gamma)(x y)=\gamma(f(x y))=\gamma(f(x) f(y)) \geq \gamma(f(y))=f^{1}(\gamma)(y)$ for all $x, y \in R$.

Hence from (i), (ii), (iii), (iv) and (vi) $\mathrm{f}^{-1}(\gamma) \in \operatorname{TLI}_{1}(\mathrm{R})$.
For $\mu \in \mathrm{L}^{\mathrm{R}}$ and $\gamma \in \mathrm{TL}(\mathrm{R})$ then $\mathrm{f}(\mu)$ is a TL-left ideal of $\mathrm{f}(\gamma)$ under the following conditions:

Theorem (4.5): Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ be a homomorphism of a near-ring R onto a near-ring S . Let $\gamma \in \operatorname{TL}(\mathrm{R})$ and μ a TL-left ideal of γ. Then $f(\mu)$ is a TL-left ideal of $f(\gamma)$.
Proof: Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ be a homomorphism of a near-ring R onto a near-ring S .
Since $\mu \leq \gamma, f(\mu) \leq f(\gamma)$.
Part (I): Let μ be a TL- right ideal of γ.
Also both $f(\mu)$ and $f(\gamma)$ are TL-subgroups of (R,+).
Let $x, y \in S$. Then

$$
\begin{aligned}
& f(\mu)(y+x-y)=v\{\mu(w) \mid w \in R, f(w)=y+x-y\} . \\
& \geq \vee\{\mu(v+u-v) \mid u, v \in R, f(u)=x, f(v)=y\} . \\
& =v\{\mu(u) \mid u \in R, f(u)=x\} \text {. } \\
& =f(\mu)(x) \text { for all } x, y \in R \text {. } \\
& f(\mu)((x+i) y-x y)=V\{\mu(w) \mid w \in R, f(w)=(x+i) y-x y\} \\
& \geq v\{\mu((u+t) v-u v) \mid u, v, t \in R, f((u+t) v-u v))=(x+i) y-x y\} \\
& \geq \vee\{\mu(\mathrm{t}) \mathrm{T} \gamma(\mathrm{v}) \mid \mathrm{t}, \mathrm{y} \in \mathrm{R}, \mathrm{f}(\mathrm{t})=\mathrm{i}, \mathrm{f}(\mathrm{y})=\mathrm{v}\} \\
& =(\vee\{\mu(t)) \mid t \in R, f(t)=i\}) T(\vee\{\gamma(v) \mid y \in R, f(y)=v\}) \text {. } \\
& =f(\mu)(i) T f(\gamma)(y) \text {. }
\end{aligned}
$$

Thus $f(\mu)((x+i) y-x y) \geq f(\mu)(i) T f(\gamma)(y)$, for all $x, y, i \in R$.
Hence $f(\mu)$ is a TL-right ideal of $f(\gamma)$.
Part (II): Let μ be a TL- left ideal of γ.

$$
\begin{aligned}
f(\mu)(x y) & =v\{\mu(w) \mid w \in R, f(w)=x y\} \\
& \geq v\{\mu(u v) \mid u, v \in R, f(u)=x, f(v)=y\} \\
& \geq \vee\{\gamma(u) T \mu(v) \mid u, v \in R, f(u)=x, f(v)=y\} \\
& =(\vee\{\gamma(u) \mid u \in R, f(u)=x\}) T(\vee\{\mu(v) \mid v \in R, f(v)=y\}) \\
& =f(\gamma)(x) T f(\mu)(y) \text { for all } x, y \in R .
\end{aligned}
$$

Hence $\mathrm{f}(\mu)$ is a TL-left ideal of $\mathrm{f}(\gamma)$.
For $\mu \in \mathrm{L}^{\mathrm{R}}$ and $\gamma \in \mathrm{TL}(\mathrm{R})$ then $\mathrm{f}(\mu)$ is a TL-left ideal of $\mathrm{f}(\gamma)$, this we prove in the following theorem:

Theorem (4.6):Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ be a homomorphism of a near-rings and $\gamma \in \mathrm{TL}(\mathrm{S})$, μ be TLright (resp.left) ideal of γ.Then $f^{1}(\mu)$ is a TL-right(resp.left) ideal of $f^{1}(\gamma)$.
Proof: Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ be a homomorphism of a near-rings.
Clearly $\mu \leq \gamma \Rightarrow \mathrm{f}^{-1}(\mu) \leq \mathrm{f}^{1}(\gamma)$.
As proved earlier $\mathrm{f}^{-1}(\mu)$ and $\mathrm{f}^{1}(\gamma)$ are TL-subgroups of R and $\mathrm{f}^{-1}(\mu) \leq \mathrm{f}^{1}(\gamma)$.
Part (I): Let μ be a TL- right ideal of γ and $x, y \in R$. Then
(i) $\mathrm{f}^{-1}(\mu)(0)=\mu(\mathrm{f})(0)=\gamma\left(0^{\prime}\right)=1$.
(ii) $f^{-1}(\mu)(-x)=\mu(f)(-x)=\mu(-f(x)) \geq \mu(f(x))=f^{1}(\mu)(x)$ for all $x \in R$.
(iii) $f^{-1}(\mu)(x-y)=\mu(f)(x-y) \geq \mu(f(x)) T \mu(f(y))=f^{-1}(\mu)(x) T f^{-1}(\mu)(y)$.
i.e. $f^{1}(\mu)(x-y) \geq f^{1}(\mu)(x) T f^{1}(\mu)(y)$ for all $x, y \in R$.
(iv) $f^{1}(\mu)(y+x-y)=\mu(f)(y+x-y)=\mu(f(y)+f(x)-f(y)) \geq \mu(f(x))=f^{1}(\mu)(x)$.
i.e. $f^{-1}(\mu)(y+x-y) \geq f^{-1}(\mu)(x)$ for all $x, y \in R$.
$(v) f^{-1}(\mu)((x+i) y-x y)=\mu(f)((x+i) y-x y)$.

$$
\begin{aligned}
& =\mu((f(x)+(f(i))(f(y)-(f(x)(f(y)) \\
& \geq \mu(f(i)) \\
& =f^{-1}(\mu)(i)
\end{aligned}
$$

Thus $\mathrm{f}^{1}(\mu)((\mathrm{x}+\mathrm{i}) \mathrm{y}-\mathrm{xy}) \geq \mu(\mathrm{f}(\mathrm{i}))=\mathrm{f}^{1}(\mu)(\mathrm{i})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{i} \in \mathrm{R}$.
Hence $f^{-1}(\mu)$ is a right ideal of $f^{1}(\gamma)$.
Part (II):Let μ be a TL- left ideal of γ. Then
(vi) $f^{-1}(\mu)(x y)=\mu(f(x y))=\mu(f(x) f(y)) \geq \gamma\left(f(x) T \mu(f(y))=\left(f^{-1}(\gamma)(x)\right) T\left(f^{-1}(\mu)(y)\right)\right.$.
i.e. $f^{1}(\mu)(x y) \geq\left(f^{1}(\gamma)(x)\right) T\left(f^{1}(\mu)(y)\right)$ for all $x, y \in R$.

Hence from (i), (ii) (iii) (iv) and (vi) $f^{-1}(\mu)$ is a TL-left ideal of $f^{1}(\gamma)$.
Theorem (4.7): If an L-subset μ^{*} of R / μ is defined by $\mu^{*}(x+\mu)=\mu(x)$ for all $x \in R$ then $\mu^{*} \in \operatorname{TLI}(\mathrm{R})$.

Proof: Now let us define a function $\mathrm{f}: \mathrm{R} / \mu \rightarrow \mathrm{R} / \mathrm{R} \mu$ by
$\mathrm{f}(\mathrm{x}+\mu)=\mathrm{x}+\mathrm{R} \mu$ for all $\mathrm{x} \in \mathrm{R}$.
We shall prove that f is an onto isomorphism.
(1) $f((x+\mu)+T(y+\mu))=f((x+y)+\mu)=(x+y)+R \mu=(x+R \mu)+(y+R \mu)$

$$
=f(x+\mu)+f(y+\mu)) .
$$

(2) $f((x+\mu) *(y+\mu))=f(x y+\mu)=x y+R \mu=(x+R \mu) *(y+R \mu)$.

$$
=f(x+\mu) * f(y+\mu) .
$$

(3) Let $f(x+\mu)=f(y+\mu)$ where $x, y \in R$.

Then $\mathrm{f}(\mathrm{x}+\mu)=\mathrm{f}(\mathrm{y}+\mu) \Rightarrow \mathrm{x}+\mathrm{R} \mu=\mathrm{y}+\mathrm{R} \mu \Rightarrow \mathrm{x}-\mathrm{y} \in \mathrm{R} \mu \Rightarrow \mu(\mathrm{x}-\mathrm{y})=\mu(0)$

$$
\Rightarrow \mu(x)=\mu(y) \Rightarrow x=y \Rightarrow x+\mu=y+\mu .
$$

Hence f is an isomorphism.
(4) We observe that for all $x+R \mu \in R / R \mu, x \in R$ there exists $x+\mu \in R / \mu$ such that $f(x+$ $\mu)=x+R \mu$ for all $x \in R$.

Therefore f is an onto isomorphism.
(5) An L-subset μ^{*} of R / μ is defined by $\mu^{*}(x+\mu)=\mu(x)$ for all $x \in R$. Then
(i) $\mu^{*}(\mu)=\mu^{*}(0+\mu)=\mu(0)=1$.
(ii) $\mu^{*}(-x+\mu)=\mu(-x) \geq \mu(x)=\mu^{*}(x+\mu)$ for all $x \in R$.
(iii) $\mu^{*}\left((x+\mu)+{ }_{T}(y+\mu)\right)=\mu^{*}((x+y)+\mu)=\mu(x+y)$.

$$
\geq \mu(\mathrm{x}) \mathrm{T} \mu(\mathrm{y})=\mu^{*}(\mathrm{x}+\mu) \mathrm{T} \mu^{*}(\mathrm{y}+\mu) \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

(iv) $\left.\mu^{*}\left((y+\mu)+_{T}(x+\mu)+{ }_{T}(-y+\mu)\right)=\mu^{*}((y+x)+\mu)+T_{T}(-y+\mu)\right)$.

$$
\left.=\mu^{*}((y+x)+\mu)+T(-y+\mu)\right) .
$$

$$
=\mu^{*}((y+x-y)+\mu) .
$$

$$
=\mu(y+x-y)
$$

$$
\geq \mu(x) .
$$

$$
\begin{aligned}
& =\mu^{*}(x+\mu) \text { for all } x, y \in R . \\
& \text { (iv) } \mu^{*}((x+\mu) *(y+\mu))=\mu^{*}(x y+\mu)=\mu(x y) \geq \mu(y)=\mu^{*}(y+\mu) \text { for all } x, y \in R . \\
& \begin{aligned}
(\text { v) }) \mu^{*}\left[\left((x+\mu)+_{T}(a+\mu)\right)\right) & *(y+\mu)-(x+\mu) *(y+\mu)] \\
& =\mu^{*}[(x+a) *(y+\mu)-(x+\mu) *(y+\mu)] . \\
& \left.=\mu^{*}[(x+a) y+\mu)-(x y+\mu)\right] \\
& \left.=\mu^{*}[((x+a) y-x y)+\mu)\right] \\
& =\mu((x+a) y-x y) . \\
& \geq \mu(a) . \\
& =\mu^{*}(a+\mu) \text { for all } x, y, a \in R .
\end{aligned}
\end{aligned}
$$

Therefore μ^{*} is a TL-left as well TL-right ideal of R .

References

[1] S. Abou-Zaid, On Fuzzy Subnear-rings and Ideals, Fuzzy Sets and Systems 44 (1991), 139-146.
[2] M. Akgul, Properties of Fuzzy Groups, Journal of Mathematical Analysis and Applications 133(1988), 93-100.
[3] J.M. Anthoy and H. Sherwood, Fuzzy Groups Redefined, Journal of Mathematical Analysis and Applications 69(1979), 124-130.
[4] M. Asaad and S. Abou-Zaid, A Contribution to the Theory of Fuzzy Subgroups, Fuzzy Sets and Systems 77(1996), 355-369.
[5] S.C. Cheng, John N. Mordeson and Yu Yandong, Lecture Notes in Fuzzy Mathematics and Computer Science, Elements of L-Algebra, Centre for Research in Fuzzy Mathematics and Computer Science, Creighton University, Omaha, Nebraska 68178, USA, 1994.
[6] P.S. Das, Fuzzy Groups and Level Subgroups, Journal of Mathematical Analysis and Applications 84(1981), 264-269.
[7] V.N. Dixit, S.K. Bhambri and Pratibha Kumar, Level Subgroups and Union of Fuzzy Subgroups, Fuzzy Sets and Systems 37(1990), 359-371.
[8] T. K. Dutta and B. K. Biswas, Fuzzy Ideals of Near-Ring, Bull. Cal. Math Soc. 89 (1997), 447-456.
[9] J.A. Goguen, L-FuzzySets, Journal of Mathematical Analysis and Applications18 (1967), 145-174.
[10] Pilz Gunter, Near-Rings, North-Holland, Amsterdam, 1983.
[11] W. Liu, Fuzzy Invariant Subgroups and Fuzzy Ideals, Fuzzy Sets and Systems 8(1982), 133-139.
[12] J.D.P. Meldrum, Near-Rings and their Links with Groups, Pitman, London.
[13] A. Rosenfeld, Fuzzy Groups, Journal Mathematical Analysis and Applications, 35 (1971), 512-517.
[14] J.D. Yadav and Y.S. Pawar, TL-ideals of Near-rings, communicated.
[15] L.A. Zadeh, Fuzzy Sets, Inform. and Control 8(1965), 338-353.

