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ABSTRACT 
Using the Steklov function, we obtain a generalization of Titchmarsh’s Theorem for 
the Fourier tranform for functions satisfying the Fourier-Lipschitz condition in the 
space L2(ℝ). 
Keywords: Fourier transform; Steklov function.  

1. Introduction and preliminaries  
The integral Fourier transform, as well as Fourier series, is widely used in various fields 
of calculus, computational mathematics, mathematical physics, etc. Certain applications 
of this transform are described in a number of fundamental monographs (e.g., see [3], [4], 
[6]).  
Titchmarsh’s ([7], Theorem 85) characterized the set of functions in L2(ℝ) satisfying the 
Cauchy Lipschitz condition by means of an asymptotic estimate growth of the norm of 
their Fourier transform, namely we have the following. 
Theorem 1.1 [7] Let   (0, 1) and assume that f L2(ℝ). Then the following are 
equivalents:  

 1. ( ) ( )f t h f t  L
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where f̂  stands for the Fourier transform of  f. 

The main aim of this paper is to establish a generalization of Theorem 1.1.  

Assume that L
p
(ℝ) (p ≥ 1) is the space of p-power integrable functions f with the norm 
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It is well known that Fourier transform of a function f ∈ L1(ℝ) is defined by the integral  

1ˆ( ) ( )
2

ixtf t f x e dx


 


  . 

Thus, we define a linear operator f̂ on the space L1(ℝ) such that each function in this 
space is put in correspondence with its Fourier transform, which, generally speaking, 
does not belong to L1(ℝ). 

In 1910, Plancherel was the first to construct the Fourier operator f̂  for the class L2(ℝ). 
He proved the following remarkable theorem establishing the equivalence of the function 
f ∈ L2(ℝ) and its Fourier transform (see [5]).  
 
The inverse Fourier transform  
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In L2(ℝ), consider the operator (Steklov’s function)  
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The finite differences of the first and higher orders are defined as follows. 
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where 
0 1( ) ( ), ( ) ( ( ))i i

h h h hF f x f x F f x F F f x     (i = 1,2,...,k  and  k = 1,2,...),  I is a 
unit operator in L2(ℝ), 
Consider the Sobolev space  

 fW k {2 L2(ℝ); )( jf  L2(ℝ), },,2,1 kj   

 
 
Since in [2], we have 
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It follows from 
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and Parseval’s equality that 
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Hence, for any function 2
kf W , we have 
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For 
1
2

p   , we introduce the normalized Bessel function of the first kind pj defined by 
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Moreover, from (2) we see that 
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which implies that, there exist 0c   and  0   satisfying 
2( ) 1px j x c x         (3) 

Using the relation (2), we obtain 

1/ 2
sin( ) xj x

x
        (4) 

From [1], we have  

( ) 1pj x         (5) 

and  

10  ),()(1 2  xxOxj p      (6) 

 
 
2.  Main Results  
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In this section we give the main result of this paper. We need first to define the Fourier-
Lipschitz class.  

Definition 2.1 :  Let   ∈ (0,k). A function 2
kf W  

 
is said to be in the Fourier-

Lipschitz class, denoted by Lip( , 2), if  
( )

2
( ) ( )k r

h f x O h   as  0h  . 

Theorem 2.2 :  Let 2
kf W . Then the following are equivalents 

 1. ( , 2)f Lip   
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Proof.  (1)   (2): Assume that ( , 2)f Lip  . Then we obtain 
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From formula (1), we have 
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By (4), we have 
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Formula (3) gives 
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There exists then a positive constant C 
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This proves that 
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(2)   (1): Suppose now that 
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We have to show that 
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and using integration by parts, we obtain 
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    2 2( )kO s  . 

We use formula (6), then 
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and this ends the proof.   

Corollary 2.3 : Let  2
kf W , and ( , 2)f Lip  , Then 
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